
- 數位電子教程
- 數位電子 - 首頁
- 數位電子基礎
- 數字系統型別
- 訊號型別
- 邏輯電平和脈衝波形
- 數字系統元件
- 數字邏輯運算
- 數字系統優勢
- 數制
- 數制
- 二進位制數表示
- 二進位制算術
- 有符號二進位制算術
- 八進位制算術
- 十六進位制算術
- 補碼算術
- 進位制轉換
- 進位制轉換
- 二進位制到十進位制轉換
- 十進位制到二進位制轉換
- 二進位制到八進位制轉換
- 八進位制到二進位制轉換
- 八進位制到十進位制轉換
- 十進位制到八進位制轉換
- 十六進位制到二進位制轉換
- 二進位制到十六進位制轉換
- 十六進位制到十進位制轉換
- 十進位制到十六進位制轉換
- 八進位制到十六進位制轉換
- 十六進位制到八進位制轉換
- 二進位制程式碼
- 二進位制程式碼
- 8421 BCD碼
- 餘三碼
- 格雷碼
- ASCII碼
- EBCDIC碼
- 程式碼轉換
- 錯誤檢測與糾錯碼
- 邏輯閘
- 邏輯閘
- 與門
- 或門
- 非門
- 通用門
- 異或門
- 同或門
- CMOS邏輯閘
- 使用二極體電阻邏輯的或門
- 與門與或門
- 兩級邏輯實現
- 閾值邏輯
- 布林代數
- 布林代數
- 布林代數定律
- 布林函式
- 德摩根定理
- 標準與或式和標準或與式
- 標準或與式轉換為標準或與式
- 最小化技術
- 卡諾圖化簡
- 三變數卡諾圖
- 四變數卡諾圖
- 五變數卡諾圖
- 六變數卡諾圖
- 無關項
- 奎因-麥克斯拉斯基法
- 最小項和最大項
- 規範式和標準式
- 最大項表示
- 使用布林代數化簡
- 組合邏輯電路
- 數字組合電路
- 數字算術電路
- 多路選擇器
- 多路選擇器設計流程
- 多路選擇器通用門
- 使用4:1多路選擇器的2變數函式
- 使用8:1多路選擇器的3變數函式
- 多路分配器
- 多路選擇器與多路分配器
- 奇偶校驗位發生器和校驗器
- 比較器
- 編碼器
- 鍵盤編碼器
- 優先編碼器
- 譯碼器
- 算術邏輯單元
- 7段LED顯示器
- 程式碼轉換器
- 程式碼轉換器
- 二進位制到十進位制轉換器
- 十進位制到BCD轉換器
- BCD到十進位制轉換器
- 二進位制到格雷碼轉換器
- 格雷碼到二進位制轉換器
- BCD到餘三碼轉換器
- 餘三碼到BCD轉換器
- 加法器
- 半加器
- 全加器
- 序列加法器
- 並行加法器
- 使用半加器的全加器
- 半加器與全加器
- 使用與非門的全加器
- 使用與非門的半加器
- 二進位制加法/減法器
- 減法器
- 半減器
- 全減器
- 並行減法器
- 使用兩個半減器的全減器
- 使用與非門的半減器
- 時序邏輯電路
- 數字時序電路
- 時鐘訊號和觸發
- 鎖存器
- 移位暫存器
- 移位暫存器應用
- 二進位制暫存器
- 雙向移位暫存器
- 計數器
- 二進位制計數器
- 非二進位制計數器
- 同步計數器設計
- 同步計數器與非同步計數器
- 有限狀態機
- 演算法狀態機
- 觸發器
- 觸發器
- 觸發器轉換
- D觸發器
- JK觸發器
- T觸發器
- SR觸發器
- 帶時鐘SR觸發器
- 無時鐘SR觸發器
- 帶時鐘JK觸發器
- JK觸發器到T觸發器
- SR觸發器到JK觸發器
- 觸發方法:觸發器
- 邊沿觸發觸發器
- 主從JK觸發器
- 競爭冒險現象
- A/D和D/A轉換器
- 模數轉換器
- 數模轉換器
- 數模轉換器和模數轉換器積體電路
- 邏輯閘的實現
- 用與非門實現非門
- 用與非門實現或門
- 用與非門實現與門
- 用與非門實現與非門
- 用與非門實現異或門
- 用與非門實現同或門
- 用或非門實現非門
- 用或非門實現或門
- 用或非門實現與門
- 用或非門實現與非門
- 用或非門實現異或門
- 用或非門實現同或門
- 使用CMOS的與非門/或非門
- 使用與非門的全減器
- 使用2:1多路選擇器的與門
- 使用2:1多路選擇器的或門
- 使用2:1多路選擇器的非門
- 儲存器件
- 儲存器件
- RAM和ROM
- 快取記憶體儲存器設計
- 可程式設計邏輯器件
- 可程式設計邏輯器件
- 可程式設計邏輯陣列
- 可程式設計陣列邏輯
- 現場可程式設計門陣列
- 數字電子系列
- 數字電子系列
- CPU架構
- CPU架構
- 數位電子資源
- 數位電子 - 快速指南
- 數位電子 - 資源
- 數位電子 - 討論
二進位制到格雷碼轉換器
二進位制到格雷碼轉換器是一種可以將二進位制程式碼轉換為等效格雷碼的程式碼轉換器。
二進位制到格雷碼轉換器接收二進位制數作為輸入,併產生相應的格雷碼作為輸出。
以下是解釋4位二進位制到格雷碼轉換器操作的真值表。
二進位制碼 | 格雷碼 | ||||||
---|---|---|---|---|---|---|---|
B3 | B2 | B1 | B0 | G3 | G2 | G1 | G0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
讓我們推匯出格雷碼輸出位的布林表示式。為此,我們將使用卡諾圖技術簡化真值表。
格雷碼位G0的卡諾圖
下圖顯示了為了獲得格雷碼位G0的布林表示式而進行的卡諾圖簡化。

因此,格雷碼位G0的布林表示式為:
$$\mathrm{G_{0} \: = \: \overline{B_{1}} \: B_{0} \: + \ B_{1} \: \overline{B_{0}} \: = \: B_{0} \: \oplus \: B_{1}}$$
格雷碼位G1的卡諾圖
格雷碼位G1的卡諾圖簡化如下所示:

因此,格雷碼位G1的布林表示式為:
$$\mathrm{G_{1} \: = \: \overline{B_{2}} \: B_{1} \: + \ B_{2} \: \overline{B_{1}} \: = \: B_{1} \: \oplus \: B_{2}}$$
格雷碼位G2的卡諾圖
格雷碼位G2的卡諾圖簡化如下圖所示:

格雷碼位G2的布林表示式將為:
$$\mathrm{G_{2} \: = \: \overline{B_{3}} \: B_{2} \: + \ B_{3} \: \overline{B_{2}} \: = \: B_{2} \: \oplus \: B_{3}}$$
格雷碼位G3的卡諾圖
格雷碼位G3的卡諾圖簡化如下圖所示:

因此,格雷碼位G3的布林表示式為:
$$\mathrm{G_{3} \: = \: B_{3}}$$
現在讓我們利用這些布林表示式來實現二進位制到格雷碼轉換器的邏輯電路。
下圖顯示了4位二進位制碼到格雷碼轉換器的邏輯電路圖:

該電路可以將4位二進位制數轉換為等效的格雷碼。
我們可以遵循相同的程式來設計任何位數的二進位制到格雷碼轉換器。