
- 數位電子教程
- 數位電子 - 首頁
- 數位電子基礎
- 數字系統型別
- 訊號型別
- 邏輯電平和脈衝波形
- 數字系統元件
- 數字邏輯運算
- 數字系統優勢
- 數制
- 數制
- 二進位制數表示
- 二進位制運算
- 帶符號二進位制運算
- 八進位制運算
- 十六進位制運算
- 補碼運算
- 進位制轉換
- 進位制轉換
- 二進位制轉十進位制
- 十進位制轉二進位制
- 二進位制轉八進位制
- 八進位制轉二進位制
- 八進位制轉十進位制
- 十進位制轉八進位制
- 十六進位制轉二進位制
- 二進位制轉十六進位制
- 十六進位制轉十進位制
- 十進位制轉十六進位制
- 八進位制轉十六進位制
- 十六進位制轉八進位制
- 二進位制程式碼
- 二進位制程式碼
- 8421 BCD碼
- 餘三碼
- 格雷碼
- ASCII碼
- EBCDIC碼
- 程式碼轉換
- 錯誤檢測與糾正碼
- 邏輯閘
- 邏輯閘
- 與門
- 或門
- 非門
- 通用門
- 異或門
- 異或非門
- CMOS邏輯閘
- 使用二極體電阻邏輯的或門
- 與門與或門比較
- 二層邏輯實現
- 閾值邏輯
- 布林代數
- 布林代數
- 布林代數定律
- 布林函式
- 德摩根定理
- SOP和POS形式
- POS到標準POS形式
- 最小化技術
- 卡諾圖化簡
- 三變數卡諾圖
- 四變數卡諾圖
- 五變數卡諾圖
- 六變數卡諾圖
- 無關項
- 奎因-麥克拉斯基法
- 最小項和最大項
- 規範式和標準式
- 最大項表示
- 使用布林代數化簡
- 組合邏輯電路
- 數字組合電路
- 數字運算電路
- 多路選擇器
- 多路選擇器設計步驟
- 多路選擇器通用門
- 使用4:1多路選擇器的2變數函式
- 使用8:1多路選擇器的3變數函式
- 多路分配器
- 多路選擇器與多路分配器比較
- 奇偶校驗位發生器和校驗器
- 比較器
- 編碼器
- 鍵盤編碼器
- 優先編碼器
- 譯碼器
- 算術邏輯單元
- 7段LED顯示
- 程式碼轉換器
- 程式碼轉換器
- 二進位制轉十進位制轉換器
- 十進位制轉BCD轉換器
- BCD轉十進位制轉換器
- 二進位制轉格雷碼轉換器
- 格雷碼轉二進位制轉換器
- BCD轉餘三碼轉換器
- 餘三碼轉BCD轉換器
- 加法器
- 半加器
- 全加器
- 序列加法器
- 並行加法器
- 使用半加器的全加器
- 半加器與全加器比較
- 使用與非門的全加器
- 使用與非門的半加器
- 二進位制加法器-減法器
- 減法器
- 半減器
- 全減器
- 並行減法器
- 使用兩個半減器的全減器
- 使用與非門的半減器
- 時序邏輯電路
- 數字時序電路
- 時鐘訊號和觸發
- 鎖存器
- 移位暫存器
- 移位暫存器應用
- 二進位制暫存器
- 雙向移位暫存器
- 計數器
- 二進位制計數器
- 非二進位制計數器
- 同步計數器設計
- 同步計數器與非同步計數器比較
- 有限狀態機
- 演算法狀態機
- 觸發器
- 觸發器
- 觸發器轉換
- D觸發器
- JK觸發器
- T觸發器
- SR觸發器
- 帶時鐘SR觸發器
- 無時鐘SR觸發器
- 帶時鐘JK觸發器
- JK觸發器轉T觸發器
- SR觸發器轉JK觸發器
- 觸發方法:觸發器
- 邊沿觸發觸發器
- 主從JK觸發器
- 競爭冒險現象
- A/D和D/A轉換器
- 模數轉換器
- 數模轉換器
- 數模轉換器和模數轉換器IC
- 邏輯閘的實現
- 用與非門實現非門
- 用與非門實現或門
- 用與非門實現與門
- 用與非門實現或非門
- 用與非門實現異或門
- 用與非門實現異或非門
- 用或非門實現非門
- 用或非門實現或門
- 用或非門實現與門
- 用或非門實現與非門
- 用或非門實現異或門
- 用或非門實現異或非門
- 使用CMOS的與非門/或非門
- 使用與非門的全減器
- 使用2:1多路選擇器的與門
- 使用2:1多路選擇器的或門
- 使用2:1多路選擇器的非門
- 儲存器件
- 儲存器件
- RAM和ROM
- 快取儲存器設計
- 可程式設計邏輯器件
- 可程式設計邏輯器件
- 可程式設計邏輯陣列
- 可程式設計陣列邏輯
- 現場可程式設計門陣列
- 數字電子系列
- 數字電子系列
- CPU架構
- CPU架構
- 數位電子資源
- 數位電子 - 快速指南
- 數位電子 - 資源
- 數位電子 - 討論
二進位制轉十進位制
二進位制轉十進位制
我們可以使用位置權重法將二進位制數轉換為其等效的十進位制數。
在這種二進位制到十進位制轉換方法中,給定二進位制數的每個數字都乘以其位置權重。然後,將所有乘積相加以獲得等效的十進位制數。
下面解釋了使用位置權重法將二進位制數轉換為其等效十進位制數的逐步過程:
步驟1 - 為每個二進位制數字編寫位置權重。
步驟2 - 將每個二進位制數字與其位置權重相乘。
步驟3 - 將乘積項相加以獲得等效的十進位制數。
讓我們考慮一些例子來理解二進位制到十進位制的轉換。
例1
將(101101)2轉換為十進位制等效值。
解答
給定的二進位制數是(101101)2
步驟1 - 為給定的二進位制數定義位置權重:
位 | 1 | 0 | 1 | 1 | 0 | 1 |
權重 | 25 | 24 | 23 | 22 | 21 | 20 |
步驟2 - 計算位和位置權重的乘積:
位 | 權重 | 相乘 | 乘積 |
---|---|---|---|
1 | 25 | 1 × 32 | 32 |
0 | 24 | 0 × 16 | 0 |
1 | 23 | 1 × 8 | 8 |
1 | 22 | 1 × 4 | 4 |
0 | 21 | 0 × 2 | 0 |
1 | 20 | 1 × 1 | 1 |
步驟3 - 將所有乘積項相加以獲得等效的十進位制數:
十進位制數 = 32 + 0 + 8 + 4 + 0 + 1 = (45)10
因此,(101101)2的十進位制等效值為(45)10。
例2
將(1111011)2轉換為十進位制等效值。
解答
將位與位置權重相乘,我們得到:
十進位制數 = 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20
十進位制數 = 64 + 32 + 16 + 8 + 0 + 2 + 1 = (123)10
因此,(1111011)2的十進位制等效值為(123)10。
例3
將(1001.11)2轉換為十進位制。
解答
給定的二進位制數具有整數部分和小數部分。整數部分乘以正權重,而小數部分乘以負權重,如下所示:
十進位制數 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 + 1 × 2-1 + 1 × 2-2
十進位制數 = 8 + 0 + 0 + 1 + 0.5 + 0.25 = (9.75)10
因此,(1001.11)2的十進位制等效值為(9.75)10。