
- 統計學教程
- 首頁
- 調整後的R平方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫定理
- 卡方分佈
- 卡方表
- 環排列
- 整群抽樣
- 科恩Kappa係數
- 組合
- 可重複組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻率分佈
- 伽馬分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- Gumbel分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽馬分佈
- Kolmogorov-Smirnov檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽馬分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列和偶排列
- 單比例Z檢驗
- 離群值函式
- 排列
- 可重複排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) 和過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態分佈表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI-83指數迴歸
- 變換
- 截尾均值
- I型和II型錯誤
- 方差
- 韋恩圖
- 大數弱定律
- Z表
- 統計學有用資源
- 統計學 - 討論
統計學 - 平方和
在統計資料分析中,總平方和(TSS或SST)是一個作為這種分析結果的標準表示方式一部分出現的量。它被定義為所有觀測值的平方和,每個觀測值與其總體平均值的差的平方。
總平方和由以下函式定義和給出
公式
${平方和 = \sum(x_i - \bar x)^2 }$
其中 -
${x_i}$ = 頻率。
${\bar x}$ = 平均數。
示例
問題陳述
計算9個孩子的身高的平方和,他們的身高分別為100、100、102、98、77、99、70、105、98,平均身高為94.3。
解決方案
給定平均數 = 94.3。求平方和
平方和的計算。 | ||
---|---|---|
A列 值或分數 ${x_i}$ | B列 離差分數 ${\sum(x_i - \bar x)}$ | C列 ${(離差分數)^2}$ ${\sum(x_i - \bar x)^2}$ |
100 | 100-94.3 = 5.7 | (5.7)2 = 32.49 |
100 | 100-94.3 = 5.7 | (5.7)2 = 32.49 |
102 | 102-94.3 = 7.7 | (7.7)2 = 59.29 |
98 | 98-94.3 = 3.7 | (3.7)2 = 13.69 |
77 | 77-94.3 = -17.3 | (-17.3)2 = 299.29 |
99 | 99-94.3 = 4.7 | (4.7)2 = 22.09 |
70 | 70-94.3 = -24.3 | (-24.3)2 = 590.49 |
105 | 105-94.3 = 10.7 | (10.7)2 = 114.49 |
98 | 98-94.3 = 3.7 | (3.7)2 = 3.69 |
${\sum x_i = 849}$ | ${\sum(x_i - \bar x)}$ | ${\sum(x_i - \bar x)^2}$ |
一階矩 | 平方和 |
廣告