統計 - 信度係數



透過對相同個體進行兩次測量並計算兩組測量的相關性來獲得的測試或測量儀器準確性的度量。

信度係數的定義和計算公式如下:

公式

${信度係數,RC = (\frac{N}{(N-1)}) \times (\frac{(總方差 - 方差和)}{總方差})}$

其中:

  • ${N}$ = 任務數量

示例

問題陳述

一項任務由三個人 (P) 完成,他們被分配了三個不同的任務 (T)。求信度係數?

P0-T0 = 10 
P1-T0 = 20 
P0-T1 = 30 
P1-T1 = 40 
P0-T2 = 50 
P1-T2 = 60 

解答

已知,學生人數 (P) = 3,任務數量 (N) = 3。為了求信度係數,請按照以下步驟操作:

步驟 1

讓我們首先計算人員及其任務的平均分數。

The average score of Task (T0) = 10 + 20/2 = 15 
The average score of Task (T1) = 30 + 40/2 = 35 
The average score of Task (T2) = 50 + 60/2 = 55 

步驟 2

接下來,計算方差。

Variance of P0-T0 and P1-T0: 
Variance = square (10-15) + square (20-15)/2 = 25
Variance of P0-T1 and P1-T1: 
Variance = square (30-35) + square (40-35)/2 = 25
Variance of P0-T2 and P1-T2: 
Variance = square (50-55) + square (50-55)/2 = 25 

步驟 3

現在,計算P0-T0和P1-T0,P0-T1和P1-T1,P0-T2和P1-T2的個體方差。為了確定個體方差值,我們需要將所有上述計算出的差異值相加。

Total of Individual Variance = 25+25+25=75 

步驟 4

計算總差異

Variance= square ((P0-T0) 
 - normal score of Person 0) 
 = square (10-15) = 25
Variance= square ((P1-T0) 
 - normal score of Person 0) 
 = square (20-15) = 25 
Variance= square ((P0-T1) 
 - normal score of Person 1) 
 = square (30-35) = 25 
Variance= square ((P1-T1) 
 - normal score of Person 1) 
 = square (40-35) = 25
Variance= square ((P0-T2) 
 - normal score of Person 2) 
 = square (50-55) = 25 
Variance= square ((P1-T2) 
- normal score of Person 2) 
 = square (60-55) = 25 

現在,將所有值相加並計算總差異。

Total Variance= 25+25+25+25+25+25 = 150  

步驟 5

最後,將這些值代入下面的公式中:

${信度係數,RC = (\frac{N}{(N-1)}) \times (\frac{(總方差 - 方差和)}{總方差}) \\[7pt] = \frac{3}{(3-1)} \times \frac{(150-75)}{150} \\[7pt] = 0.75 }$
廣告
© . All rights reserved.