
- 統計教程
- 首頁
- 調整R方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫定理
- 卡方分佈
- 卡方表
- 圓排列
- 整群抽樣
- 科恩Kappa係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻數分佈
- 伽瑪分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總均值
- Gumbel分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽瑪分佈
- Kolmogorov-Smirnov檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽瑪分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列與偶排列
- 單比例Z檢驗
- 異常值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) 和過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI-83指數迴歸
- 變換
- 截尾均值
- I型和II型錯誤
- 方差
- 韋恩圖
- 大數弱定律
- Z表
- 統計有用資源
- 統計 - 討論
統計 - 總均值
當樣本量相等時,換句話說,每個樣本可能包含五個值,或者每個樣本包含n個值。總均值與樣本均值的均值相同。
公式
$\overline{X} = \frac{\sum x}{N}$
其中:
$N$ = 樣本組總數。
$\sum x$ = 所有樣本組均值的和。
示例
問題陳述
確定每個組或樣本組的均值。使用以下資料作為樣本以確定均值和總均值。
Jackson | 1 | 6 | 7 | 10 | 4 |
---|---|---|---|---|---|
Thomas | 5 | 2 | 8 | 14 | 6 |
Garrard | 8 | 2 | 9 | 12 | 7 |
解決方案
步驟1:計算所有均值
$\overline{x}_1 = \frac{1+6+7+10+4}{5} = \frac{28}{5} = 5.6 \\[7pt] \overline{x}_2 = \frac{5+2+8+14+6}{5} = \frac{35}{5} = 7 \\[7pt] \overline{x}_3 = \frac{8+2+9+12+7}{5} = \frac{38}{5} = 7.6 $
步驟2:將總和除以組數以確定總均值。在樣本中,共有三組。
$\overline{X} = \frac{5.6+7+7.6}{3} = \frac{20.2}{3} \\[7pt] = 6.73 $
廣告