- 統計學教程
- 首頁
- 調整後的R平方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫定理
- 卡方分佈
- 卡方表
- 迴圈排列
- 整群抽樣
- 科恩Kappa係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察
- 資料收集 - 案例研究方法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻率分佈
- 伽馬分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- Gumbel分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽馬分佈
- Kolmogorov-Smirnov檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽馬分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列和偶排列
- 單比例Z檢驗
- 異常值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) 和過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤差 (SE)
- 標準正態分佈表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI-83指數迴歸
- 轉換
- 截尾均值
- I類和II類錯誤
- 方差
- 韋恩圖
- 大數弱定律
- Z表
- 統計學有用資源
- 統計學 - 討論
統計學 - 標準誤差 (SE)
樣本分佈的標準差稱為標準誤差。在抽樣中,三個最重要的特徵是:準確性、偏差和精確性。可以說
從任何一個樣本中得出的估計值與其與總體引數的差異程度成正比。由於總體引數只能透過樣本調查來確定,因此它們通常是未知的,並且樣本估計值與總體引數之間的實際差異無法測量。
如果從所有可能的樣本中得出的估計值的平均值等於總體引數,則估計量是無偏的。
即使估計量是無偏的,單個樣本也很可能產生不準確的估計,如前所述,不準確性無法測量。但是,可以使用標準誤差的概念來測量精確度,即預期總體引數的真實值所在的範圍。
公式
$SE_\bar{x} = \frac{s}{\sqrt{n}}$
其中 -
${s}$ = 標準差
和 ${n}$ = 觀察次數
示例
問題陳述
計算以下個體資料的標準誤差
| 專案 | 14 | 36 | 45 | 70 | 105 |
|---|
解決方案
讓我們首先計算算術平均數 $\bar{x}$
$\bar{x} = \frac{14 + 36 + 45 + 70 + 105}{5} \\[7pt] \, = \frac{270}{5} \\[7pt] \, = {54}$
現在讓我們計算標準差 ${s}$
$s = \sqrt{\frac{1}{n-1}((x_{1}-\bar{x})^{2}+(x_{2}-\bar{x})^{2}+...+(x_{n}-\bar{x})^{2})} \\[7pt] \, = \sqrt{\frac{1}{5-1}((14-54)^{2}+(36-54)^{2}+(45-54)^{2}+(70-54)^{2}+(105-54)^{2})} \\[7pt] \, = \sqrt{\frac{1}{4}(1600+324+81+256+2601)} \\[7pt] \, = {34.86}$
因此,標準誤差 $SE_\bar{x}$
$SE_\bar{x} = \frac{s}{\sqrt{n}} \\[7pt] \, = \frac{34.86}{\sqrt{5}} \\[7pt] \, = \frac{34.86}{2.23} \\[7pt] \, = {15.63}$
給定數字的標準誤差為15.63。
樣本所佔總體的比例越小,此乘數的影響就越小,因為然後有限乘數將接近1,並且對標準誤差的影響可以忽略不計。因此,如果樣本量小於總體的5%,則忽略有限乘數。
廣告