- 統計學教程
- 首頁
- 調整後的R方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫不等式
- 卡方分佈
- 卡方表
- 環狀排列
- 整群抽樣
- 科恩 Kappa 係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻數分佈
- 伽馬分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- 格姆貝爾分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽馬分佈
- Kolmogorov-Smirnov檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽馬分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列與偶排列
- 單比例Z檢驗
- 離群值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) & 過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI-83指數迴歸
- 轉換
- 截尾均值
- I型與II型錯誤
- 方差
- 韋恩圖
- 大數弱定律
- Z表
- 統計學有用資源
- 統計學 - 討論
統計學 - 幾何機率分佈
幾何分佈是負二項分佈的特例。它處理的是獲得單次成功所需的試驗次數。因此,幾何分佈是成功次數 (r) 等於 1 的負二項分佈。
公式
${P(X=x) = p \times q^{x-1} }$
其中 −
${p}$ = 單次試驗的成功機率。
${q}$ = 單次試驗的失敗機率 (1-p)
${x}$ = 成功之前的失敗次數。
${P(X=x)}$ = n次試驗中x次成功的機率。
示例
問題陳述
在一個遊樂會上,如果參賽者從一定距離將環套在樁上,就有資格獲得獎品。據觀察,只有30%的參賽者能夠做到這一點。如果某人有5次機會,那麼在他已經錯過了4次機會的情況下,他贏得獎品的機率是多少?
解答
如果某人已經錯過了四次機會,並且必須在第五次機會中獲勝,那麼這是一個在5次試驗中獲得第一次成功的機率實驗。問題陳述也表明機率分佈是幾何分佈。成功機率由幾何分佈公式給出
${P(X=x) = p \times q^{x-1} }$
其中 −
${p = 30\% = 0.3 }$
${x = 5}$ = 成功之前的失敗次數。
因此,所需的機率
$ {P(X=5) = 0.3 \times (1-0.3)^{5-1} , \\[7pt] \, = 0.3 \times (0.7)^4, \\[7pt] \, \approx 0.072 \\[7pt] \, \approx 7.2 \% }$
廣告