
- 統計教程
- 首頁
- 調整R方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫定理
- 卡方分佈
- 卡方表
- 環狀排列
- 整群抽樣
- 科恩的卡帕係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻數分佈
- 伽瑪分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- 格烏貝爾分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽瑪分佈
- 柯爾莫哥洛夫-斯米爾諾夫檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽瑪分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均偏差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列與偶排列
- 單比例Z檢驗
- 異常值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) & 過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI 83指數迴歸
- 變換
- 截尾均值
- I型&II型錯誤
- 方差
- 維恩圖
- 大數弱定律
- Z表
- 統計實用資源
- 統計 - 討論
統計 - 超幾何分佈
超幾何隨機變數是從超幾何實驗中得到的成功次數。超幾何隨機變數的機率分佈稱為超幾何分佈。
超幾何分佈由以下機率函式定義和給出
公式
${h(x;N,n,K) = \frac{[C(k,x)][C(N-k,n-x)]}{C(N,n)}}$
其中:
${N}$ =總體中的專案數
${k}$ =總體中的成功數。
${n}$ =從該總體中抽取的隨機樣本中的專案數。
${x}$ =隨機樣本中的成功數。
示例
問題陳述
假設我們從一副普通的撲克牌中無放回地隨機抽取5張牌。得到恰好2張紅牌(即紅桃或方塊)的機率是多少?
解決方案
這是一個超幾何實驗,我們知道以下內容:
N = 52;因為一副牌中有52張牌。
k = 26;因為一副牌中有26張紅牌。
n = 5;因為我們從牌中隨機抽取5張牌。
x = 2;因為我們抽取的牌中有2張是紅牌。
我們將這些值代入超幾何公式如下:
${h(x;N,n,k) = \frac{[C(k,x)][C(N-k,n-x)]}{C(N,n)} \\[7pt] h(2; 52, 5, 26) = \frac{[C(26,2)][C(52-26,5-2)]}{C(52,5)} \\[7pt] = \frac{[325][2600]}{2598960} \\[7pt] = 0.32513 }$
因此,隨機抽取2張紅牌的機率是0.32513。
廣告