- 統計學教程
- 首頁
- 調整後的R方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫不等式
- 卡方分佈
- 卡方表
- 環狀排列
- 整群抽樣
- 科恩 Kappa 係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累計頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻數分佈
- 伽馬分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- Gumbel 分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽馬分佈
- Kolmogorov-Smirnov檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽馬分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列和偶排列
- 單比例Z檢驗
- 離群值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) 和過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本規劃
- 抽樣方法
- 散點圖
- 夏農-威納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI-83 指數迴歸
- 轉換
- 截尾均值
- I類和II類錯誤
- 方差
- 維恩圖
- 大數弱定律
- Z表
- 統計學有用資源
- 統計學 - 討論
統計學 - 排列
排列是指對集合中的所有或部分物件進行排列,考慮排列的順序。例如,假設我們有一組三個字母:A、B 和 C。我們可能會問,從該集合中排列 2 個字母有多少種方法。
排列的定義和公式如下:
公式
${^nP_r = \frac{n!}{(n-r)!} }$
其中:
${n}$ = 進行排列的集合的大小。
${r}$ = 每次排列的大小。
${n,r}$是非負整數。
示例
問題陳述
一位計算機科學家正在嘗試發現一個金融賬戶的關鍵詞。如果關鍵詞只包含 10 個小寫字元(例如,從集合 {a, b, c... w, x, y, z} 中選擇 10 個字元),並且不能重複使用任何字元,那麼有多少種不同的唯一字元排列方式?
解答
步驟 1:確定問題是關於排列還是組合。由於更改潛在關鍵詞的順序(例如,ajk 與 kja)會產生新的可能性,因此這是一個排列問題。
步驟 2:確定 n 和 r
n = 26,因為計算機科學家是從 26 種可能性(例如,a、b、c... x、y、z)中進行選擇。
r = 10,因為計算機科學家要選擇 10 個字元。
步驟 3:應用公式
${^{26}P_{10} = \frac{26!}{(26-10)!} \\[7pt] \ = \frac{26!}{16!} \\[7pt] \ = \frac{26(25)(24)...(11)(10)(9)...(1)}{(16)(15)...(1)} \\[7pt] \ = 26(25)(24)...(17) \\[7pt] \ = 19275223968000 }$
廣告