- 統計教程
- 首頁
- 調整後的R方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫不等式
- 卡方分佈
- 卡方表
- 環狀排列
- 整群抽樣
- Cohen's kappa 係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻數分佈
- 伽瑪分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- Gumbel 分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽瑪分佈
- Kolmogorov-Smirnov 檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽瑪分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均偏差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列和偶排列
- 單比例Z檢驗
- 離群值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) & 過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI 83 指數迴歸
- 轉換
- 截尾均值
- I型和II型錯誤
- 方差
- 韋恩圖
- 大數弱定律
- Z表
- 統計學有用資源
- 統計學 - 討論
統計 - 最佳點估計
點估計是指利用樣本資料計算單個值(稱為統計量),作為未知(固定或隨機)總體引數的“最佳猜測”或“最佳估計”。更正式地說,它是將點估計量應用於資料。
公式
${MLE = \frac{S}{T}}$
${Laplace = \frac{S+1}{T+2}}$
${Jeffrey = \frac{S+0.5}{T+1}}$
${Wilson = \frac{S+ \frac{z^2}{2}}{T+z^2}}$
其中 −
${MLE}$ = 最大似然估計。
${S}$ = 成功次數。
${T}$ = 試驗次數。
${z}$ = Z臨界值。
示例
問題陳述 −
如果一枚硬幣在9次試驗中拋擲了4次正面,置信區間水平為99%,那麼這枚硬幣成功的最佳點是多少?
解答 −
成功次數(S) = 4,試驗次數(T) = 9,置信區間水平(P) = 99% = 0.99。為了計算最佳點估計,讓我們計算所有值 −
步驟1 −
$ {MLE = \frac{S}{T} \\[7pt] \, = \frac{4}{9} , \\[7pt] \, = 0.4444}$
步驟2 −
$ {Laplace = \frac{S+1}{T+2} \\[7pt] \, = \frac{4+1}{9+2} , \\[7pt] \, = \frac{5}{11}, \\[7pt] \, = 0.4545}$
步驟3 −
$ {Jeffrey = \frac{S+0.5}{T+1} \\[7pt] \, = \frac{4+0.5}{9+1} , \\[7pt] \, = \frac{4.5}{10}, \\[7pt] \, = 0.45}$
步驟4 −
從Z表中查詢Z臨界值。99%水平下的Z臨界值(z) = 2.5758
步驟5 −
$ {Wilson = \frac{S+ \frac{z^2}{2}}{T+z^2} \\[7pt] \, = \frac{4+\frac{2.57582^2}{2}}{9+2.57582^2} , \\[7pt] \, = 0.468 }$
結果
因此,最佳點估計為0.468,因為MLE ≤ 0.5
計算器
廣告