- 統計學教程
- 首頁
- 調整後的R平方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫定理
- 卡方分佈
- 卡方表
- 迴圈排列
- 整群抽樣
- 科恩Kappa係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻數
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻數分佈
- 伽馬分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- Gumbel分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽馬分佈
- Kolmogorov-Smirnov檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽馬分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均偏差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列和偶排列
- 單比例Z檢驗
- 異常值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) 和過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態分佈表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI-83指數迴歸
- 轉換
- 截尾平均數
- I型和II型錯誤
- 方差
- 維恩圖
- 大數弱定律
- Z表
- 統計學有用資源
- 統計學 - 討論
統計學 - 偏度
如果離散度衡量的是變異量,那麼變異的方向則是由偏度來衡量的。最常用的偏度度量是卡爾·皮爾遜的度量,用符號Skp表示。它是一個相對的偏度度量。
公式
${S_{KP} = \frac{平均數-眾數}{標準差}}$
當分佈是對稱時,偏度係數的值為零,因為平均數、中位數和眾數重合。如果偏度係數為正值,則分佈為正偏態;如果為負值,則分佈為負偏態。用矩來表示偏度如下
${\beta_1 = \frac{\mu^2_3}{\mu^2_2} \\[7pt] 其中\ \mu_3 = \frac{\sum(X- \bar X)^3}{N} \\[7pt] \, \mu_2 = \frac{\sum(X- \bar X)^2}{N}}$
如果${\mu_3}$的值為零,則表示分佈是對稱的。${\mu_3}$的值越高,對稱性就越大。但是${\mu_3}$不能告訴我們偏度的方向。
示例
問題陳述
收集了兩所院校IT課程學生平均成績的資訊如下
| 度量 | A院校 | B院校 |
|---|---|---|
| 平均數 | 150 | 145 |
| 中位數 | 141 | 152 |
| 標準差 | 30 | 30 |
我們可以得出結論,這兩個分佈在變異方面是否相似嗎?
解決方案
檢視可用資訊可以發現,兩所院校的離散度都為30名學生。但是,要確定這兩個分佈是否相似,需要進行更全面的分析,即我們需要計算偏度度量。
${S_{KP} = \frac{平均數-眾數}{標準差}}$
眾數的值沒有給出,但可以使用以下公式計算
${ 眾數 = 3 中位數 - 2 平均數 \\[7pt] A院校: 眾數 = 3 (141) - 2 (150)\\[7pt] \, = 423-300 = 123 \\[7pt] S_{KP} = \frac{150-123}{30} \\[7pt] \, = \frac{27}{30} = 0.9 \\[7pt] \\[7pt] B院校: 眾數 = 3(152)-2 (145)\\[7pt] \, = 456-290 \\[7pt] \, S_kp = \frac{(142-166)}{30} \\[7pt] \, = \frac{(-24)}{30} = -0.8 }$
廣告