- 統計學教程
- 首頁
- 調整後的R平方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫定理
- 卡方分佈
- 卡方表
- 迴圈排列
- 整群抽樣
- 科恩Kappa係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察
- 資料收集 - 案例研究方法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F分佈
- F檢驗表
- 階乘
- 頻數分佈
- 伽馬分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- Gumbel分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽馬分佈
- Kolmogorov-Smirnov檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽馬分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列和偶排列
- 單比例Z檢驗
- 異常值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) 和過程效能 (Pp)
- 過程Sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本計劃
- 抽樣方法
- 散點圖
- 夏農-威納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態分佈表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生t檢驗
- 平方和
- t分佈表
- TI-83指數迴歸
- 變換
- 截尾均值
- I型和II型錯誤
- 方差
- 維恩圖
- 大數弱定律
- Z表
- 統計學有用資源
- 統計學 - 討論
統計學 - 機率加法定理
對於互斥事件
機率加法定理指出,如果A和B是兩個互斥事件,則事件A或B發生的機率由下式給出:
${P(A或B) = P(A) + P(B) \\[7pt] P (A \cup B) = P(A) + P(B)}$
該定理也可以擴充套件到三個互斥事件,如下所示:
${P(A \cup B \cup C) = P(A) + P(B) + P(C) }$
示例
問題陳述
從一副52張牌中抽取一張牌,求抽到一張國王或王后的機率。
解答
設事件(A) = 抽到一張國王牌
事件(B) = 抽到一張王后牌
P(抽到國王或王后) = P(抽到國王) + P(抽到王后)
${P (A \cup B) = P(A) + P(B) \\[7pt] = \frac{4}{52} + \frac{4}{52} \\[7pt] = \frac{1}{13} + \frac{1}{13} \\[7pt] = \frac{2}{13}}$
對於非互斥事件
如果兩個事件都有可能發生,則加法定理寫成:
${P(A或B) = P(A) + P(B) - P(A和B)\\[7pt] P (A \cup B) = P(A) + P(B) - P(AB)}$
示例
問題陳述
已知一名射手7次射擊中3次命中目標,另一名射手5次射擊中2次命中目標。求兩人都射擊時目標至少被擊中的機率。
解答
第一名射手擊中目標的機率P(A) = ${\frac{3}{7}}$
第二名射手擊中目標的機率P(B) = ${\frac{2}{5}}$
事件A和B不是互斥事件,因為兩個射手都可能擊中目標。因此,適用的加法規則是
${P (A \cup B) = P (A) + P(B) - P (A \cap B) \\[7pt] = \frac{3}{7}+\frac{2}{5}-(\frac{3}{7} \times \frac{2}{5}) \\[7pt] = \frac{29}{35}-\frac{6}{35} \\[7pt] = \frac{23}{35}}$
廣告