- 統計學教程
- 主頁
- 調整後 R 方
- 方差分析
- 算術平均數
- 算術中位數
- 算術眾數
- 算術極差
- 條形圖
- 最佳點估計
- 貝塔分佈
- 二項分佈
- 布萊克-斯科爾斯模型
- 箱線圖
- 中心極限定理
- 切比雪夫定理
- 卡方分佈
- 卡方表
- 環狀排列
- 整群抽樣
- 科恩 Kappa 係數
- 組合
- 有放回組合
- 比較圖表
- 連續均勻分佈
- 連續數列算術平均數
- 連續數列算術中位數
- 連續數列算術眾數
- 累積頻率
- 變異係數
- 相關係數
- 累積圖
- 累積泊松分佈
- 資料收集
- 資料收集 - 問卷設計
- 資料收集 - 觀察法
- 資料收集 - 案例研究法
- 資料模式
- 十分位數統計
- 離散數列算術平均數
- 離散數列算術中位數
- 離散數列算術眾數
- 點圖
- 指數分佈
- F 分佈
- F 檢驗表
- 階乘
- 頻數分佈
- 伽馬分佈
- 幾何平均數
- 幾何機率分佈
- 擬合優度
- 總平均數
- 古博分佈
- 調和平均數
- 調和數
- 諧振頻率
- 直方圖
- 超幾何分佈
- 假設檢驗
- 個體數列算術平均數
- 個體數列算術中位數
- 個體數列算術眾數
- 區間估計
- 逆伽馬分佈
- 柯爾莫哥洛夫-斯米爾諾夫檢驗
- 峰度
- 拉普拉斯分佈
- 線性迴歸
- 對數伽馬分佈
- 邏輯迴歸
- 麥克尼馬爾檢驗
- 平均偏差
- 均值差異
- 多項分佈
- 負二項分佈
- 正態分佈
- 奇排列和偶排列
- 單比例 Z 檢驗
- 異常值函式
- 排列
- 有放回排列
- 餅圖
- 泊松分佈
- 合併方差 (r)
- 功效計算器
- 機率
- 機率加法定理
- 機率乘法定理
- 機率貝葉斯定理
- 機率密度函式
- 過程能力 (Cp) 和過程效能 (Pp)
- 過程 sigma
- 二次迴歸方程
- 定性資料與定量資料
- 四分位差
- 經驗法則
- 瑞利分佈
- 迴歸截距置信區間
- 相對標準偏差
- 信度係數
- 所需樣本量
- 殘差分析
- 殘差平方和
- 均方根
- 樣本規劃
- 抽樣方法
- 散點圖
- 夏農-維納多樣性指數
- 信噪比
- 簡單隨機抽樣
- 偏度
- 標準差
- 標準誤 (SE)
- 標準正態表
- 統計顯著性
- 統計公式
- 統計符號
- 莖葉圖
- 分層抽樣
- 學生 t 檢驗
- 平方和
- t 分佈表
- TI 83 指數迴歸
- 轉換
- 截尾均值
- I 型和 II 型錯誤
- 方差
- 維恩圖
- 大數弱定律
- Z 表
- 統計學有用資源
- 統計學 - 討論
統計學 - 學生 t 檢驗
t 檢驗是小樣本檢驗。它由威廉·戈塞特於 1908 年提出。他以“學生”的筆名發表了這項檢驗。因此,它被稱為學生 t 檢驗。應用 t 檢驗時,需要計算 t 統計量的值。為此,使用以下公式:
公式
${t} = \frac{與總體引數的偏差}{樣本統計量的標準誤差}$
其中:
${t}$ = 假設檢驗。
關於總體的假設檢驗
公式
${t} ={\bar X - \frac{\mu}{S}.\sqrt{n}} , \\[7pt] \, 其中\ {S} = \sqrt{\frac{\sum{(X-\bar X)}^2}{n-1}}$
示例
問題陳述
從一個普通總體中不規則抽取的 9 個樣本的平均值為 41.5 英寸,與該平均值的偏差平方和等於 72 英寸。判斷總體平均值為 44.5 英寸的假設是否合理。(對於 ${v}={8},\ {t_.05}={2.776}$)
解答
${\bar x = 41.5}, {\mu = 44.5}, {n=9}, {\sum{(X-\bar X)}^2 = 72} $
我們假設總體平均值為 44.5。
$ i.e. {H_0: \mu = 44.5}\ and\ {H_1: \mu \ne 44.5} , \\[7pt] \ {S} = \sqrt{\frac{\sum{(X-\bar X)}^2}{n-1}}, \\[7pt] \ = \sqrt{\frac{72}{9-1}} = \sqrt{\frac{72}{8}} = \sqrt{9} = {3}$
應用 t 檢驗
$ {|t|} = {\bar X - \frac{\mu}{S}.\sqrt{n}} , \\[7pt] \ {|t|} = \frac{|41.5 - 44.5|}{3} \times \sqrt {9}, \\[7pt] \ = {3}$
自由度 = $ {v = n-1 = 9-1 = 8 }$. 對於 ${v = 8, t_{0.05}}$ 雙尾檢驗 = ${2.306}$。由於計算出的 $|t|$ 值 > t 表值,我們拒絕零假設。我們得出結論,總體平均值不等於 44.5。