- 能力傾向有用資源
- 能力傾向 - 問答
能力傾向 - 水管與水箱線上測驗
以下測驗提供與水管與水箱相關的多項選擇題 (MCQ)。您需要閱讀所有給出的答案,然後點選正確的答案。如果您不確定答案,可以使用顯示答案按鈕檢視答案。您可以使用下一組測驗按鈕檢視測驗中的新一組問題。
答案:B
解釋
Part filled in 1 min. = 3/7. remaining part = (1- 3/7)= 4/7 Let the required time be x min. More part, more time taken. (Direct) 3/7: 4/7:: 1: x ⇒ 3x/7 = (4/7*1) ⇒ x= 4/3 min.
問題 2 - 一個水泵可以在2小時內注滿一個水箱。由於水箱漏水,需要7/3小時才能注滿水箱。這個洞可以將注滿的水箱排空需要多少時間
答案:D
解釋
Part filled by the pump in 1 hr = 1/2 Net part filled by the pump and leak in 1 hr = 3/7 Emptying work done by the leak in 1 hr= (1/2 - 3/7)= 1/14 Leak can empty the tank in 14 hours.
問題 3 - 一個漏斗可以在40分鐘內排空一個水箱。第二個水管的直徑是第一個水管的兩倍,也連線到水箱中進行排水。這兩個水管一起可以將水箱排空需要多少時間
答案:B
解釋
A pipe with double diameter will take half time. So, the second pipe can empty the full tank in 20 min. Part emptied by both in 1 min. (1/40+ 1/20) = 3/40 Time taken to empty the full tank = 40/3 min.
問題 4 - 兩個水管可以分別在15小時和12小時內注滿一個水箱,而第三個水管可以在4小時內排空水箱。如果水管分別在早上8點、9點和11點同時開啟,水箱會在什麼時候排空?
答案:D
解釋
Let the tank be emptied in x hrs after 8 am. Work done by A in x hrs, by B in (x-1) hrs and C in (x-3) hrs = 0 ⇒x/15+ (x-1)/12- (x-3)/4 = 0 ⇒ 4x+5(x-1) - 15(x-3) = 0 ⇒6x= 40 ⇒x= 20/3 hrs. ⇒x= 6 hrs. 40 min after 8 am Hence the tank will be emptied at 14 hrs 40 min, i.e., 2:40 pm
問題 5 - 一個水庫有三個水管A、B和C。A和B可以分別在3小時和4小時內注滿水庫,而C可以在1小時內排空完全注滿的水庫。如果水管分別在下午3點、4點和5點同時開啟,水庫將在什麼時候最終排空?
答案:B
解釋
Let the cistern be emptied in x hrs after 3 pm Work done by A in x hrs, by B in(x-1) hrs and by C in (x-2) hrs= 0 ⇒x/3 +x-1/4 ? (x-2) =0 ⇒ 4x+3(x-1)-12(x-2) = 0 ⇒5x=21 ⇒x= 4 hrs 12 min. Required time is 7.12 pm.
問題 6 - 一個大型油罐可以由兩個管道A和B分別在1小時和40分鐘內注滿。如果B管道使用一段時間,然後A和B管道一起注滿剩餘的時間,那麼從空狀態注滿油罐需要多長時間?
答案:D
解釋
Let the total time taken be x minute. Then, (1/40*x/2) + (1/60+ 1/40) x/2= 1 ⇒ x/80 + x/48 = 1 ⇒3x+ 5x= 240 ⇒8x= 240 ⇒x= 30 Hence, the required time is 30 minutes.
問題 7 - 一個水箱底部的一個洞可以在6小時內排空滿箱的水。一個水管以每分鐘4升的速度注水。當水箱裝滿時,開啟水管,由於漏水,水箱在8小時內被排空。水箱的容積是多少?
答案:B
解釋
Part filled in 1 hour = (1/6-1/8)= 1/24 So, the inlet can fill the tank in 24 hours. Capacity of the tank= volume of water that flows in 24 hrs = (4*60*24) ltr. = 5760 liters.
答案:D
解釋
T = xy/(x+y) = (36*45)/(36+45) = 1620/80 = 20 hours Or, Part filled by A in 1 hour = 1/36 Part filled by B in 1 hour = 1/45 Part filled by (A+B) in 1 hour = (1/36 + 1/45) = 1/20 ∴ Both the pipes can fill the tank in 20 hours.
問題 9 - 兩個水管A和B可以分別在20分鐘和24分鐘內注滿一個水箱。第三個水管C可以以每分鐘3加侖的速度排水。如果A、B和C同時開啟,在15分鐘內注滿水箱,水箱的容積(以加侖為單位)是多少?
答案:C
解釋
Let the capacity of the tank = x gallons Quantity of the water filled in the tank in 1 min when all the pipes A, B and C are opened simultaneously= x/20 + x/24 - 3 According to question, x/20 + x/24 - 3 = x/15 or, x/20 + x/24 - x/15 = 3 or, (6x + 5x - 8x)/120 = 3 or, 3x/120 = 3 or, x = 120 gallons
問題 10 - 一個水管注滿水箱的速度是另一個水管的三倍。如果兩個水管一起在36分鐘內注滿水箱,那麼較慢的水管單獨注滿水箱需要多長時間?
答案:D
解釋
Let the time taken by faster pipe be x min ∴ 1/x + 1/3x = 1/36 Or, (3 +1)/3x = 1/36 Or, x = 48 min ∴ Time taken by slower pipe to fill the tank = 3*48min = 144 min