能力傾向測試 - 基礎算術示例



題1 - 以下哪個是等差數列5, 8, 11, 14, 17, ...的第16項?

A - 50

B - 51

C - 52

D - 53

答案 - A

解釋

Here a = 5, d = 8 - 5 = 3, n = 16
Using formula Tn = a + (n - 1)d
T16 = 5 + (16 - 1) x 3
= 50

題2 - 等差數列4, 9, 14, 19, 24, ...的第幾項是109?

A - 第20項

B - 第21項

C - 第22項

D - 第23項

答案 - C

解釋

Here a = 4, d = 9 - 4 = 5
Using formula Tn = a + (n - 1)d
Tn = 4 + (n - 1) x 5 = 109 where 109 is the nth term.
=> 4 + 5n - 5 = 109
=> 5n = 109 + 1 
=> n = 110 / 5 
= 22 

題3 - 等差數列7, 13, 19, ... 205中共有多少項?

A - 31

B - 32

C - 33

D - 34

答案 - D

解釋

Here a = 7, d = 13 - 7 = 6, Tn = 205
Using formula Tn = a + (n - 1)d
Tn = 7 + (n - 1) x 6 = 205 where 205 is the nth term.
=> 7 + 6n - 6 = 205
=> 6n = 205 - 1 
=> n = 204 / 6 
= 34 

題4 - 如果等差數列的第6項是12,第8項是22,那麼它的第一項是多少?

A - -13

B - 13

C - 2

D - 1

答案 - A

解釋

Using formula Tn = a + (n - 1)d
T6 = a + (6 - 1)d = 12   ...(i)
T8 = a + (8 - 1)d = 22   ...(ii)
Substract (i) from (ii)
=> 2d = 10 
=> d = 5
Using (i)
a = 12 - 5d 
= 12 - 25
= -13 

題5 - 如果等差數列的第6項是12,第8項是22,那麼它的公差是多少?

A - 4

B - 5

C - 6

D - 7

答案 - B

解釋

Using formula Tn = a + (n - 1)d
T6 = a + (6 - 1)d = 12   ...(i)
T8 = a + (8 - 1)d = 22   ...(ii)
Substract (i) from (ii)
=> 2d = 10 
=> d = 5

題6 - 如果等差數列的第6項是12,第8項是22,那麼它的第16項是多少?

A - 60

B - 61

C - 62

D - 63

答案 - C

解釋

Using formula Tn = a + (n - 1)d
T6 = a + (6 - 1)d = 12   ...(i)
T8 = a + (8 - 1)d = 22   ...(ii)
Substract (i) from (ii)
=> 2d = 10 
=> d = 5
Using (i)
a = 12 - 5d 
= 12 - 25
= -13 
∴ T16 = -13 + (16 - 1) x 5
= 75 - 13 
= 62 

題7 - 等差數列5, 9, 13, 17, ...的前17項之和是多少?

A - 626

B - 627

C - 628

D - 629

答案 - D

解釋

Here a = 5, d = 9 - 5 = 4, n = 17
Using formula Sn = (n/2)[2a + (n - 1)d]
S17 = (17/2)[2 x 5 + (17 - 1) x 4]
= (17/2)(10 + 64)
= 17 x 74 / 2
= 629

題8 - 數列2, 5, 8, ..., 182的和是多少?

A - 5612

B - 5613

C - 5614

D - 5615

答案 - A

解釋

Here a = 2, d = 5 - 2 = 3, Tn = 182
Using formula Tn = a + (n - 1)d
a + (n - 1)d = 182
=> 2 + (n - 1) x 3 = 182
=> 3n = 183
=> n = 61.
Using formula Sn = (n/2)[2a + (n - 1)d]
S61 = (61/2)[2 x 2 + (61 - 1) x 3]
= (61/2)(4 + 180)
= 61 x 184 / 2
= 5612

題9 - 如果三個等差數列的和是15,積是80,那麼這三個數是多少?

A - 5, 7, 3

B - 2, 5, 8

C - 6, 7, 2

D - 5, 5, 5

答案 - B

解釋

Let've numbers are a - d, a and a + d
Then a - d + a + a + d = 15
=> 3a = 15
=> a = 5
Now (a - d)a(a + d) = 80
=> (5 - d) x 5 x (5 + d) = 80
=> 25 - d2 = 16
=> d2 = 9
=> d = +3 or -3
∴ numbers are either 2, 5, 8 or 8, 5, 2.

題10 - 等比數列3, 6, 12, 18...的第9項是多少?

A - 766

B - 768

C - 772

D - 774

答案 - B

解釋

Here a = 3, r = 6 / 3 = 2, T9 = ?
Using formula Tn = ar(n - 1)
T9 = 3 x 2(9 - 1) 
=3 x 28 
=3 x 256
=768

題11 - 如果等比數列的第4項是54,第9項是13122,那麼它的第一項是多少?

A - 2

B - 3

C - 4

D - 6

答案 - A

解釋

Using formula Tn = ar(n - 1)
T4 = ar(4 - 1) = 54   
=> ar3 = 54   ...(i)
T9 = ar(9 - 1) = 13122
=> ar8 = 13122   ...(ii)
Dividing (ii) by (i)
=> r5 = 13122 / 54 = 243 = (3)5
=> r = 3
Using (i)
a x 27 = 54
=> a = 2 

題12 - 如果等比數列的第4項是54,第9項是13122,那麼它的公比是多少?

A - 2

B - 3

C - 4

D - 6

答案 - B

解釋

Using formula Tn = ar(n - 1)
T4 = ar(4 - 1) = 54   
=> ar3 = 54   ...(i)
T9 = ar(9 - 1) = 13122
=> ar8 = 13122   ...(ii)
Dividing (ii) by (i)
=> r5 = 13122 / 54 = 243 = (3)5
=> r = 3

題13 - 如果等比數列的第4項是54,第9項是13122,那麼它的第6項是多少?

A - 484

B - 485

C - 486

D - 487

答案 - C

解釋

Using formula Tn = ar(n - 1)
T4 = ar(4 - 1) = 54   
=> ar3 = 54   ...(i)
T9 = ar(9 - 1) = 13122
=> ar8 = 13122   ...(ii)
Dividing (ii) by (i)
=> r5 = 13122 / 54 = 243 = (3)5
=> r = 3
Using (i)
a x 27 = 54
=> a = 2 
∴ T6 = ar(6 - 1) = 2 x (3)5  
= 2 x 243
= 486

題14 - 兩個數的和是80。如果第一個數的三倍等於第二個數的五倍,那麼這兩個數是多少?

A - 50, 30

B - 60, 20

C - 70, 10

D - 65, 15

答案 - A

解釋

Let the numbers are y and 80 - y.
Then 3y = 5(80-y)
=> 8y = 400 
∴ y = 50
and second number = 80 - 50 = 30.

題15 - 如果一個數的三分之一比它的五分之一大16,那麼這個數是多少?

A - 150

B - 120

C - 180

D - 210

答案 - B

解釋

Let the number be y.
Then (y / 3) - (y / 5) = 16
=> 5y - 3y = 16 x 15 = 240
=> 2y = 240
∴ y = 120

題16 - 如果三個連續的3的倍數的和是90,那麼最大的數是多少?

A - 21

B - 30

C - 33

D - 36

答案 - C

解釋

Let the numbers be 3y , 3y + 3, 3y + 6
Now 3y + 3y + 3 + 3y + 6 = 90
=> 9y = 81
=> y = 9
=> largest number = 3y + 6 = 3 x 9 + 6 
= 33

題17 - 如果一個正整數的十五倍比它的平方小16,那麼這個正整數是多少?

A - 13

B - 14

C - 15

D - 16

答案 - D

解釋

Let the positive integer by y.
Then y2 - 15y = 16
=> y2 - 15y - 16 = 0
=> y2 - 16y + y - 16 = 0
=> y(y-16) + (y-16) = 0
=> (y+1)(y-16)= 0
∴ y = 16. as -1 is not a positive integer.

題18 - 如果一個正整數的二十三倍比它的平方大63,那麼這個正整數是多少?

A - 7

B - 8

C - 9

D - 10

答案 - A

解釋

Let the positive integer by y.
Then 23y - 2y2 = 63
=> 23y - 2y2 - 63 = 0
=> 2y2 - 23y + 63 = 0
=> 2y2 - 14y - 9y + 63 = 0
=> 2y(y-7) - 9(y-7)= 0
=> (2y-9)(y-7)= 0
∴ y = 7. as 9/2 is not an integer.

題19 - 如果三個數的比例為3:2:5,並且它們的平方和是1862,那麼最小的數是多少?

A - 13

B - 14

C - 12

D - 11

答案 - B

解釋

Let've number as 3y, 2y and 5y.
Then 9y2 + 4y2 + 25y2 = 1862.
=> 38y2 = 1862
=> y2 = 1862 / 38 = 49
=> y = 7
∴ smallest number = 2y = 2 x 7 = 14.

題20 - 一個兩位數的數字和是10。如果交換數字,得到的數比原來的數小54。這個數是多少?

A - 46

B - 64

C - 82

D - 28

答案 - C

解釋

Let the ten's digit is x and unit digit of number is y.
Then  x + y = 10   ...(i)
(10x + y) - (10y - x) = 54
=> 9x - 9y = 54
=> x - y = 6    ...(ii)
Adding (i) and (ii)
2x = 16
=> x = 8
Using (i)
y = 10 - x = 2
∴ number is 82.
廣告
© . All rights reserved.