高低和距離 - 例題解析
答案 - A
解釋

From the right angled triangle Tan(45°)= X/375 => X = 375 m
答案 - C
解釋

Let cot-1(4/5) = x => cotx = 4/5 => tan(x) = 5/4 From the right angled triangle Tan(x) = h/90 => h = 5/4*90 =112.5 m
答案 - C
解釋

Let h be the height of tower From figure. 20 =h ( cot30 - cot60) 20 =h (√3-1/√3) => 20√3 = h (3-1) => h=10√3.
答案 - B
解釋

Tan(60)=h1/AB => h1=√3AB Tan(45)=h1/BC => h2=BC h1/ h2=√3/1 => h1:h2=√3:1
答案 - B
解釋

Let the distance between the towers be X From the right angled triangle CFD Tan(45)= (90-45)/X => x=45 meters
答案 - A
解釋

From ∠APB = 60° and AB = 180 m. AB/AP= tan 60° =√3 AP=AB/√3 =180/√3=60√3
題7 - 一座25米高的塔頂與電線杆底部之間的仰角為45°,與電線杆頂部之間的仰角為30°。求電線杆的高度。
答案 - B
解釋

Let AB be the tower and CD be the electric pole. From the figure CA = DE => 25/(Tan(45))=(25-h)/(Tan(30)) => 25 Tan(30) = 25-h => h=25-25Tan(30) =25(1- Tan(30)) =25((√3-1)/√3)
答案 - D
解釋

Let AB be the observer and CD be the tower. Then, CE = AB = 1.4 m, BE = AC = 10v3 m. DE/BE=Tan (30) =1/√3 DE=10√3/√3=10 CD=CE+DE=1.4+10=11.4 m
題9 - 一人在塔頂觀察一艘快速遠離塔的船。當船距離塔75米時,船與人的視線的俯角為60°。10秒後,俯角變為45°。假設船在靜水中航行,則船的近似速度是多少?
答案 - D
解釋

Let AB be the tower and C and D be the positions of the boat. Distance travelled by boat = CD From the figure 75tan(60)=(75+CD)tan(45) =>75√3 = 75+CD =>CD =55 m Speed = distance/time=55/10 =5.5 m/sec=19.8 kmph
答案 - C
解釋

=>(180-h)/90 = Tan(45) => h =90 m
aptitude_height_distance.htm
廣告