- 能力傾向有用資源
- 能力傾向 - 問答
算術線上測驗
以下測驗提供了與基礎算術相關的多項選擇題 (MCQ)。您需要閱讀所有給出的答案,然後點選正確的答案。如果您不確定答案,可以使用顯示答案按鈕檢視答案。您可以使用下一題按鈕檢視測驗中的新一組問題。
答案:A
解釋
Here a = 4, d = 4.5 - 4 = 0.5, n = 105 Using formula Tn = a + (n - 1)d T105 = 4 + (105 - 1) x 0.5 = 56
答案:B
解釋
Divisor = (5 x 29) = 145 = 5 x Quotient = Divisor => Quotient = 145/5 = 29 Dividend = (Divisor x Quotient) + Remainder Dividend = (145* 29) + 29 = 4234.
答案:D
解釋
Let the third number be 100. ∴First Number = 50 and Second Number = 46 Decrease = 50 - 46 = 4 ∴Required Percentage = (4/50)x100 = 8%
第 5 題 - 如果等差數列 a, a-b, a-2b, ... 的第 10 項是 20,第 20 項是 10,那麼第 x 項是多少?
答案:D
解釋
Here a = a-b, d = (a-2b) - (a-b) = -b, Using formula Tn = a + (n - 1)d T10 = (a-b) + (10 - 1) x (-b) = 20 => a - 9b = 20 ... (i) T20 = (a-b) + (20 - 1) x (-b) = 10 => a - 19b = 10 ... (ii) Subtracting (ii) from (i) 10b = 10 => b = 1 Using (i) a - 9(1) = 20 => a = 29 ∴ xth term = a + (x-1)d = a + (x-1)(-b) = 20 + (x-1)(-1) = 30-x
答案:B
解釋
As a, a-2 and 3a are in an A.P. ∴ (a-2) - a = 3a - (a-2) => -2 = 2a - 2 => a = -2
答案:C
解釋
let the numbers are a/r, a, ar Then a/r x a x ar = 512 => a3 = 83 gt; a = 8 Now a/r + a + ar = 28 => 8/r + 8 + 8r = 28 => 8/r + 8r = 20 => 2/r + 2r = 5 => 2r2 + -5r + 2 = 0 => 2r2 + -4r -r + 2 = 0 => 2r(r-2) - (r-2)=0 => (r-2)(2r-1) = 0 => r = 2 or r = 1/2 ∴ numbers are 4, 8, 16.
第 8 題 - 在一個俱樂部中,會員的年齡成等差數列,公差為 3 個月。如果最年輕的會員是 7 歲,所有會員年齡的總和是 250 歲,那麼俱樂部有多少名會員?
答案:C
解釋
let the ages be 7 , 7.25, 7.5 and so on Here a = 7, d = 1/4 , Sn = 250 Using formula Sn = (n/2)[2a + (n-1)d] => (n/2)[14+(n-1)(1/4)] = 250 => n[14 + (n-1)/4] = 500 => n[56 + (n-1)] = 2000 => n[n + 55] = 2000 => n2 + 55n - 2000 = 0 => n2 + 80n -25n - 2000 = 0 => n(n-80) -25(n-80) = 0 => (n-80)(n-25) = 0 => n = 25
答案:D
解釋
Here a = 2, d = 7 - 2 = 5, Let there be n term. Using formula Tn = a + (n - 1)d Tn = 2 + (n - 1) x 5 = 92 => 5n - 3 = 92 => n = 19
答案:A
解釋
Let's have first term as a, common difference is d then a + 3d = 16 ... (i) a + 11d = 80 ... (ii) Subtracting (i) from (ii) => 8d = 64 => d = 8 Using (i) => a = 14 - 3d = -10 Using formula Tn = a + (n - 1)d T17 = -10 + (17 - 1) x 8 = 118
aptitude_arithmetic.htm
廣告