- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸進分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 雜湊表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴實現漢諾塔
- DSA - 使用遞迴實現斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心演算法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止日期的作業排序
- DSA - 最佳合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似演算法)
- 隨機化演算法
- DSA - 隨機化演算法
- DSA - 隨機化快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
Z演算法
用於模式匹配的Z演算法
Z演算法是一種線性時間字串匹配演算法,用於在字串中搜索給定模式。其目的是搜尋字串中給定模式的所有出現。Z演算法依賴於Z陣列來查詢模式出現。Z陣列是一個整數陣列,儲存模式與文字任何子字串之間最長公共字首的長度。它與字串的長度相同。
Z演算法如何工作?
Z演算法透過構建一個名為Z陣列的輔助陣列來工作,該陣列儲存給定文字與文字任何子字串之間最長公共字首的長度。此陣列中的每個索引都儲存匹配字元的數量,從第0個索引到當前索引。
Z演算法需要以下步驟:
首先,將模式和給定字串合併在一起。我們還需要在兩者之間新增一個特殊字元,該字元不在任何指定的字串中。假設我們使用美元符號(
$)作為特殊字元。然後,為這個新建立的字串構建Z陣列。
現在,檢查Z陣列的每個索引以查詢其值是否與正在搜尋的模式的長度匹配。如果值和長度匹配,則將模式標記為已找到。
在最後一步中,從模式長度+1中減去索引號,這將導致模式的索引。
下圖說明了上述方法:
讓我們瞭解輸入輸出場景:
Input: Main String: "ABAAABCDBBABCDDEBCABC" Pattern: "ABC" Output: Pattern found at position: 4 Pattern found at position: 10 Pattern found at position: 18
在上述場景中,我們正在主字串“ABAAABCDBBABCDDEBCABC”中查詢模式“ABC”。我們將檢查主字串中的每個位置並記下我們在哪裡找到匹配項。我們在位置4、10和18找到了模式“ABC”。
示例
以下是演示各種程式語言中Z演算法的示例:
#include <stdio.h>
#include <string.h>
// function to fill Z array
void fillZArray(const char* conStr, int zArr[]) {
int n = strlen(conStr);
int windLeft, windRight, k;
// Initialize the window size to 0
windLeft = windRight = 0;
// iterating over the characters of the new string
for (int i = 1; i < n; i++) {
// checking if current index is greater than right bound of window
if (i > windRight) {
// reset the window size to 0 and position it at the current index
windLeft = windRight = i;
// extend right bound of window as long as characters match
while (windRight < n && conStr[windRight - windLeft] == conStr[windRight]) {
windRight++;
}
// setting the Z value for the current index
zArr[i] = windRight - windLeft;
// decrementing right bound
windRight--;
} else {
// calculating corresponding index in window
k = i - windLeft;
// if Z value at corresponding index is less than remaining interval
if (zArr[k] < windRight - i + 1) {
zArr[i] = zArr[k];
} else {
// reset left bound of window to current index
windLeft = i;
// extend right bound of window as long as characters match
while (windRight < n && conStr[windRight - windLeft] == conStr[windRight]) {
windRight++;
}
// Setting the Z value for the current index
zArr[i] = windRight - windLeft;
// Decrement the right bound of the window
windRight--;
}
}
}
}
// function to implement the Z algorithm for pattern searching
void zAlgorithm(const char* mainString, const char* pattern, int array[], int *index) {
// concatenate the pattern, a special character, and the main string
char concatedStr[strlen(mainString) + strlen(pattern) + 1];
strcpy(concatedStr, pattern);
strcat(concatedStr, "$");
strcat(concatedStr, mainString);
int patLen = strlen(pattern);
int len = strlen(concatedStr);
// Initialize the Z array
int zArr[len];
// Fill the Z array
fillZArray(concatedStr, zArr);
// iterate over the Z array
for (int i = 0; i < len; i++) {
// if Z value equals length of the pattern, the pattern is found
if (zArr[i] == patLen) {
(*index)++;
array[(*index)] = i - patLen - 1;
}
}
}
int main() {
const char* mainString = "ABAAABCDBBABCDDEBCABC";
const char* pattern = "ABC";
// Initialize the location array and the index
int locArray[strlen(mainString)];
int index = -1;
// Calling the Z algorithm function
zAlgorithm(mainString, pattern, locArray, &index);
// to print the result
for (int i = 0; i <= index; i++) {
printf("Pattern found at position: %d\n", locArray[i]);
}
return 0;
}
輸出
Pattern found at position: 4 Pattern found at position: 10 Pattern found at position: 18
#include<iostream>
using namespace std;
// function to fill Z array
void fillZArray(string conStr, int zArr[]) {
int n = conStr.size();
int windLeft, windRight, k;
// initially window size is 0
windLeft = windRight = 0;
// iterating over the characters of the new string
for(int i = 1; i < n; i++) {
// checking if current index is greater than right bound of window
if(i > windRight) {
// reset the window size to 0 and position it at the current index
windLeft = windRight = i;
// extend right bound of window as long as characters match
while(windRight < n && conStr[windRight-windLeft] == conStr[windRight]) {
windRight++;
}
// setting the Z value for the current index
zArr[i] = windRight-windLeft;
// decrementing right bound
windRight--;
}else {
// calculating corresponding index in window
k = i-windLeft;
// if Z value at corresponding index is less than remaining interval
if(zArr[k] < windRight-i+1)
zArr[i] = zArr[k];
else {
// reset left bound of window to current index
windLeft = i;
// extend right bound of window as long as characters match
while(windRight < n && conStr[windRight - windLeft] == conStr[windRight]) {
windRight++;
}
// Setting the Z value for the current index
zArr[i] = windRight - windLeft;
// Decrement the right bound of the window
windRight--;
}
}
}
}
// function to implement the Z algorithm for pattern searching
void zAlgorithm(string mainString, string pattern, int array[], int *index) {
// concatenate the pattern, a special character, and the main string
string concatedStr = pattern + "$" + mainString;
int patLen = pattern.size();
int len = concatedStr.size();
// Initialize the Z array
int zArr[len];
// Fill the Z array
fillZArray(concatedStr, zArr);
// iterate over the Z array
for(int i = 0; i<len; i++) {
// if Z value equals length of the pattern, the pattern is found
if(zArr[i] == patLen) {
(*index)++;
array[(*index)] = i - patLen -1;
}
}
}
int main() {
string mainString = "ABAAABCDBBABCDDEBCABC";
string pattern = "ABC";
// Initialize the location array and the index
int locArray[mainString.size()];
int index = -1;
// Calling the Z algorithm function
zAlgorithm(mainString, pattern, locArray, &index);
// to print the result
for(int i = 0; i <= index; i++) {
cout << "Pattern found at position: " << locArray[i]<<endl;
}
}
輸出
Pattern found at position: 4 Pattern found at position: 10 Pattern found at position: 18
public class ZAlgorithm {
// method to fill Z array
public static void fillZArray(String conStr, int[] zArr) {
int n = conStr.length();
int windLeft, windRight, k;
// initially window size is 0
windLeft = windRight = 0;
// iterating over the characters of the new string
for (int i = 1; i < n; i++) {
// checking if current index is greater than right bound of window
if (i > windRight) {
// reset the window size to 0 and position it at the current index
windLeft = windRight = i;
while (windRight < n && conStr.charAt(windRight - windLeft) == conStr.charAt(windRight)) {
windRight++;
}
// setting the Z value for the current index
zArr[i] = windRight - windLeft;
windRight--;
} else {
k = i - windLeft;
if (zArr[k] < windRight - i + 1)
zArr[i] = zArr[k];
else {
windLeft = i;
while (windRight < n && conStr.charAt(windRight - windLeft) == conStr.charAt(windRight)) {
windRight++;
}
zArr[i] = windRight - windLeft;
windRight--;
}
}
}
}
// method to implement the Z algorithm for pattern searching
public static void zAlgorithm(String mainString, String pattern, int[] array) {
// concatenate the pattern, a special character, and the main string
String concatedStr = pattern + "$" + mainString;
int patLen = pattern.length();
int len = concatedStr.length();
// Initialize the Z array
int[] zArr = new int[len];
// Fill the Z array
fillZArray(concatedStr, zArr);
int index = -1;
// iterate over the Z array
for (int i = 0; i < len; i++) {
// if Z value equals length of the pattern, the pattern is found
if (zArr[i] == patLen) {
index++;
array[index] = i - patLen - 1;
}
}
// Print the results
for (int i = 0; i <= index; i++) {
System.out.println("Pattern found at position: " + array[i]);
}
}
public static void main(String[] args) {
String mainString = "ABAAABCDBBABCDDEBCABC";
String pattern = "ABC";
// Initialize the location array and the index
int[] locArray = new int[mainString.length()];
// Calling the Z algorithm method
zAlgorithm(mainString, pattern, locArray);
}
}
輸出
Pattern found at position: 4 Pattern found at position: 10 Pattern found at position: 18
# function to fill Z array
def fillZArray(conStr, zArr):
n = len(conStr)
windLeft, windRight, k = 0, 0, 0
# iterating over the characters of the new string
for i in range(1, n):
if i > windRight:
windLeft, windRight = i, i
while windRight < n and conStr[windRight - windLeft] == conStr[windRight]:
windRight += 1
zArr[i] = windRight - windLeft
windRight -= 1
else:
k = i - windLeft
if zArr[k] < windRight - i + 1:
zArr[i] = zArr[k]
else:
windLeft = i
while windRight < n and conStr[windRight - windLeft] == conStr[windRight]:
windRight += 1
zArr[i] = windRight - windLeft
windRight -= 1
# function to implement the Z algorithm for pattern searching
def zAlgorithm(mainString, pattern, array):
concatedStr = pattern + "$" + mainString
patLen = len(pattern)
length = len(concatedStr)
zArr = [0] * length
fillZArray(concatedStr, zArr)
index = -1
for i in range(length):
if zArr[i] == patLen:
index += 1
array[index] = i - patLen - 1
return index, array
def main():
mainString = "ABAAABCDBBABCDDEBCABC"
pattern = "ABC"
locArray = [0] * len(mainString)
index, locArray = zAlgorithm(mainString, pattern, locArray)
for i in range(index + 1):
print("Pattern found at position:", locArray[i])
if __name__ == "__main__":
main()
輸出
Pattern found at position: 4 Pattern found at position: 10 Pattern found at position: 18
Z演算法的複雜度
Z演算法用於模式搜尋,其執行時間為線性時間。因此,其時間複雜度為O(m + n),其中n是被搜尋字串的長度,m是被搜尋模式的長度。
廣告