
- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸近分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 散列表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹 (Trie)
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴的漢諾塔
- DSA - 使用遞迴的斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止期限的作業排序
- DSA - 最優合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃法)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似演算法)
- 隨機化演算法
- DSA - 隨機化演算法
- DSA - 隨機化快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
廣度優先搜尋 (BFS) 演算法
廣度優先搜尋 (BFS) 演算法
廣度優先搜尋 (BFS) 演算法以廣度優先的方式遍歷圖資料結構,以搜尋滿足一組條件的節點。它使用佇列來記住下次搜尋的起始頂點,當任何迭代中出現死鎖時。
廣度優先搜尋 (BFS) 演算法從樹根開始,在移動到下一深度級別的節點之前,探索當前深度級別上的所有節點。

如上例所示,BFS演算法首先從A到B到E到F遍歷,然後到C和G,最後到D。它採用以下規則。
規則1 - 訪問相鄰的未訪問頂點。將其標記為已訪問。顯示它。將其插入佇列。
規則2 - 如果找不到相鄰頂點,則從佇列中移除第一個頂點。
規則3 - 重複規則1和規則2,直到佇列為空。
步驟 | 遍歷 | 描述 |
---|---|---|
1 | ![]() |
初始化佇列。 |
2 | ![]() |
我們從訪問S(起始節點)開始,並將其標記為已訪問。 |
3 | ![]() |
然後我們看到S的未訪問相鄰節點。在這個例子中,我們有三個節點,但按字母順序我們選擇A,將其標記為已訪問並將其入隊。 |
4 | ![]() |
接下來,S的未訪問相鄰節點是B。我們將其標記為已訪問並將其入隊。 |
5 | ![]() |
接下來,S的未訪問相鄰節點是C。我們將其標記為已訪問並將其入隊。 |
6 | ![]() |
現在,S沒有未訪問的相鄰節點了。因此,我們出隊並找到A。 |
7 | ![]() |
從A我們有D作為未訪問的相鄰節點。我們將其標記為已訪問並將其入隊。 |
在這個階段,我們沒有未標記(未訪問)的節點了。但是根據演算法,我們繼續出隊以獲得所有未訪問的節點。當佇列為空時,程式結束。
示例
以下是各種程式語言中廣度優先搜尋 (BFS) 演算法的實現:
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #define MAX 5 struct Vertex { char label; bool visited; }; //queue variables int queue[MAX]; int rear = -1; int front = 0; int queueItemCount = 0; //graph variables //array of vertices struct Vertex* lstVertices[MAX]; //adjacency matrix int adjMatrix[MAX][MAX]; //vertex count int vertexCount = 0; //queue functions void insert(int data) { queue[++rear] = data; queueItemCount++; } int removeData() { queueItemCount--; return queue[front++]; } bool isQueueEmpty() { return queueItemCount == 0; } //graph functions //add vertex to the vertex list void addVertex(char label) { struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex)); vertex->label = label; vertex->visited = false; lstVertices[vertexCount++] = vertex; } //add edge to edge array void addEdge(int start,int end) { adjMatrix[start][end] = 1; adjMatrix[end][start] = 1; } //display the vertex void displayVertex(int vertexIndex) { printf("%c ",lstVertices[vertexIndex]->label); } //get the adjacent unvisited vertex int getAdjUnvisitedVertex(int vertexIndex) { int i; for(i = 0; i<vertexCount; i++) { if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false) return i; } return -1; } void breadthFirstSearch() { int i; //mark first node as visited lstVertices[0]->visited = true; //display the vertex displayVertex(0); //insert vertex index in queue insert(0); int unvisitedVertex; while(!isQueueEmpty()) { //get the unvisited vertex of vertex which is at front of the queue int tempVertex = removeData(); //no adjacent vertex found while((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) { lstVertices[unvisitedVertex]->visited = true; displayVertex(unvisitedVertex); insert(unvisitedVertex); } } //queue is empty, search is complete, reset the visited flag for(i = 0;i<vertexCount;i++) { lstVertices[i]->visited = false; } } int main() { int i, j; for(i = 0; i<MAX; i++) { // set adjacency for(j = 0; j<MAX; j++) // matrix to 0 adjMatrix[i][j] = 0; } addVertex('S'); // 0 addVertex('A'); // 1 addVertex('B'); // 2 addVertex('C'); // 3 addVertex('D'); // 4 addEdge(0, 1); // S - A addEdge(0, 2); // S - B addEdge(0, 3); // S - C addEdge(1, 4); // A - D addEdge(2, 4); // B - D addEdge(3, 4); // C - D printf("\nBreadth First Search: "); breadthFirstSearch(); return 0; }
輸出
Breadth First Search: S A B C D
//C++ code for Breadth First Traversal #include <iostream> #include <stdlib.h> #include <stdbool.h> #define MAX 5 struct Vertex { char label; bool visited; }; //queue variables int queue[MAX]; int rear = -1; int front = 0; int queueItemCount = 0; //graph variables //array of vertices struct Vertex* lstVertices[MAX]; //adjacency matrix int adjMatrix[MAX][MAX]; //vertex count int vertexCount = 0; //queue functions void insert(int data) { queue[++rear] = data; queueItemCount++; } int removeData() { queueItemCount--; return queue[front++]; } bool isQueueEmpty() { return queueItemCount == 0; } //graph functions //add vertex to the vertex list void addVertex(char label) { struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex)); vertex->label = label; vertex->visited = false; lstVertices[vertexCount++] = vertex; } //add edge to edge array void addEdge(int start,int end) { adjMatrix[start][end] = 1; adjMatrix[end][start] = 1; } //display the vertex void displayVertex(int vertexIndex) { std::cout << lstVertices[vertexIndex]->label << " "; } //get the adjacent unvisited vertex int getAdjUnvisitedVertex(int vertexIndex) { int i; for(i = 0; i<vertexCount; i++) { if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false) return i; } return -1; } void breadthFirstSearch() { int i; //mark first node as visited lstVertices[0]->visited = true; //display the vertex displayVertex(0); //insert vertex index in queue insert(0); int unvisitedVertex; while(!isQueueEmpty()) { //get the unvisited vertex of vertex which is at front of the queue int tempVertex = removeData(); //no adjacent vertex found while((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) { lstVertices[unvisitedVertex]->visited = true; displayVertex(unvisitedVertex); insert(unvisitedVertex); } } //queue is empty, search is complete, reset the visited flag for(i = 0;i<vertexCount;i++) { lstVertices[i]->visited = false; } } int main() { int i, j; for(i = 0; i<MAX; i++) { // set adjacency for(j = 0; j<MAX; j++) // matrix to 0 adjMatrix[i][j] = 0; } addVertex('S'); // 0 addVertex('A'); // 1 addVertex('B'); // 2 addVertex('C'); // 3 addVertex('D'); // 4 addEdge(0, 1); // S - A addEdge(0, 2); // S - B addEdge(0, 3); // S - C addEdge(1, 4); // A - D addEdge(2, 4); // B - D addEdge(3, 4); // C - D std::cout << "Breadth First Search: "; breadthFirstSearch(); return 0; }
輸出
Breadth First Search: S A B C D
//Java code for Breadth First Traversal import java.util.LinkedList; import java.util.Queue; class Vertex { char label; boolean visited; public Vertex(char label) { this.label = label; visited = false; } } public class Graph { private static final int MAX = 5; private Vertex[] lstVertices; private int[][] adjMatrix; private int vertexCount; public Graph() { lstVertices = new Vertex[MAX]; adjMatrix = new int[MAX][MAX]; vertexCount = 0; } private void addVertex(char label) { Vertex vertex = new Vertex(label); lstVertices[vertexCount++] = vertex; } private void addEdge(int start, int end) { adjMatrix[start][end] = 1; adjMatrix[end][start] = 1; } private void displayVertex(int vertexIndex) { System.out.print(lstVertices[vertexIndex].label + " "); } private int getAdjUnvisitedVertex(int vertexIndex) { for (int i = 0; i < vertexCount; i++) { if (adjMatrix[vertexIndex][i] == 1 && !lstVertices[i].visited) return i; } return -1; } private void breadthFirstSearch() { lstVertices[0].visited = true; displayVertex(0); Queue<Integer> queue = new LinkedList<>(); queue.add(0); while (!queue.isEmpty()) { int tempVertex = queue.poll(); int unvisitedVertex; while ((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) { lstVertices[unvisitedVertex].visited = true; displayVertex(unvisitedVertex); queue.add(unvisitedVertex); } } // Reset the visited flag for (int i = 0; i < vertexCount; i++) { lstVertices[i].visited = false; } } public static void main(String[] args) { Graph graph = new Graph(); for (int i = 0; i < MAX; i++) { for (int j = 0; j < MAX; j++) graph.adjMatrix[i][j] = 0; } graph.addVertex('S'); // 0 graph.addVertex('A'); // 1 graph.addVertex('B'); // 2 graph.addVertex('C'); // 3 graph.addVertex('D'); // 4 graph.addEdge(0, 1); // S - A graph.addEdge(0, 2); // S - B graph.addEdge(0, 3); // S - C graph.addEdge(1, 4); // A - D graph.addEdge(2, 4); // B - D graph.addEdge(3, 4); // C - D System.out.print("Breadth First Search: "); graph.breadthFirstSearch(); } }
輸出
Breadth First Search: S A B C D
#Python program for Breadth First Search # defining MAX 5 MAX = 5 class Vertex: def __init__(self, label): self.label = label self.visited = False # queue variables queue = [0] * MAX rear = -1 front = 0 queueItemCount = 0 # graph variables #array of vertices lstVertices = [None] * MAX #adjacency matrix adjMatrix = [[0] * MAX for _ in range(MAX)] #vertex count vertexCount = 0 # queue functions def insert(data): global rear, queueItemCount rear += 1 queue[rear] = data queueItemCount += 1 def removeData(): global front, queueItemCount queueItemCount -= 1 data = queue[front] front += 1 return data def isQueueEmpty(): return queueItemCount == 0 # graph functions #add vertex to the vertex list def addVertex(label): global vertexCount vertex = Vertex(label) lstVertices[vertexCount] = vertex vertexCount += 1 #add edge to edge array def addEdge(start, end): adjMatrix[start][end] = 1 adjMatrix[end][start] = 1 #Display the vertex def displayVertex(vertexIndex): print(lstVertices[vertexIndex].label, end=" ") #Get the adjacent unvisited vertex def getAdjUnvisitedVertex(vertexIndex): for i in range(vertexCount): if adjMatrix[vertexIndex][i] == 1 and not lstVertices[i].visited: return i return -1 def breadthFirstSearch(): #mark first node as visited lstVertices[0].visited = True #Display the vertex displayVertex(0) #insert vertex index in queue insert(0) while not isQueueEmpty(): #get the unvisited vertex of vertex which is at front of the queue tempVertex = removeData() #no adjacent vertex found unvisitedVertex = getAdjUnvisitedVertex(tempVertex) while unvisitedVertex != -1: lstVertices[unvisitedVertex].visited = True displayVertex(unvisitedVertex) insert(unvisitedVertex) unvisitedVertex = getAdjUnvisitedVertex(tempVertex) #queue is empty, search is complete, reset the visited flag for i in range(vertexCount): lstVertices[i].visited = False # main function if __name__ == "__main__": #set adjacency for i in range(MAX): #matrix to 0 for j in range(MAX): adjMatrix[i][j] = 0 addVertex('S') addVertex('A') addVertex('B') addVertex('C') addVertex('D') addEdge(0, 1) addEdge(0, 2) addEdge(0, 3) addEdge(1, 4) addEdge(2, 4) addEdge(3, 4) print("Breadth First Search: ", end="") breadthFirstSearch()
輸出
Breadth First Search: S A B C D
BFS演算法的複雜度
時間複雜度
BFS演算法的時間複雜度表示為O(V + E),其中V是節點數,E是邊數。
空間複雜度
BFS演算法的空間複雜度為O(V)。
廣告