
- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸近分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 雜湊表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴的漢諾塔
- DSA - 使用遞迴的斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止日期的作業排序
- DSA - 最優合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃法)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似演算法)
- 隨機化演算法
- DSA - 隨機化演算法
- DSA - 隨機化快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
B+樹
B+樹是B樹的擴充套件,旨在提高插入、刪除和搜尋操作的效率。
B+樹的特性與B樹類似,不同之處在於B樹可以在所有內部節點和葉子節點中儲存鍵和記錄,而B+樹在葉子節點中儲存記錄,在內部節點中儲存鍵。B+樹的一個重要特性是所有葉子節點都以單鏈表的形式相互連線,並且有一個數據指標指向磁碟檔案中存在的資料。這有助於以相同的磁碟訪問次數獲取記錄。
由於主記憶體的大小有限,B+樹充當無法儲存在主記憶體中的記錄的資料儲存。為此,內部節點儲存在主記憶體中,葉子節點儲存在輔助儲存器中。

B+樹的特性
B+樹中除根節點外的每個節點最多包含m個子節點和(m-1)個鍵,最少包含$\mathrm{\left \lceil \frac{m}{2}\right \rceil}$個子節點和$\mathrm{\left \lceil \frac{m-1}{2}\right \rceil}$個鍵,因為樹的階數為m。
根節點必須至少有兩個子節點和至少一個搜尋鍵。
B樹中的所有路徑必須在同一級別結束,即葉子節點必須在同一級別。
B+樹始終保持資料排序。
B+樹的基本操作
B+樹支援的操作包括插入、刪除和搜尋,每個操作的時間複雜度為O(log n)。
它們與B樹操作幾乎相同,因為這兩種資料結構儲存資料的基本思想相同。然而,不同之處在於資料只儲存在B+樹的葉子節點中,而B樹則不然。
插入操作
向B+樹插入資料從葉子節點開始。
步驟1 - 計算要新增到B+樹節點中的鍵的最大值和最小值。

步驟2 - 將元素逐個新增到葉子節點中,直到超過最大鍵數。

步驟3 - 將節點分成兩半,左子節點包含最小數量的鍵,其餘鍵儲存在右子節點中。

步驟4 - 但是,如果內部節點也超過最大鍵屬性,則將節點分成兩半,左子節點包含最小數量的鍵,其餘鍵儲存在右子節點中。但是,右子節點中最小的數字將成為父節點。

步驟5 - 如果葉子節點和內部節點都具有最大數量的鍵,則以類似的方式將它們都分割,並將右子節點中最小的鍵新增到父節點中。

示例
以下是各種程式語言中此操作的實現:
// C program for Bplus tree #include <stdio.h> #include <stdlib.h> struct BplusTree { int *d; struct BplusTree **child_ptr; int l; int n; }; struct BplusTree *r = NULL, *np = NULL, *x = NULL; struct BplusTree* init() { //to create nodes int i; np = (struct BplusTree*)malloc(sizeof(struct BplusTree)); np->d = (int*)malloc(6 * sizeof(int)); // order 6 np->child_ptr = (struct BplusTree**)malloc(7 * sizeof(struct BplusTree*)); np->l = 1; np->n = 0; for (i = 0; i < 7; i++) { np->child_ptr[i] = NULL; } return np; } void traverse(struct BplusTree *p) { //traverse tree printf("\n"); int i; for (i = 0; i < p->n; i++) { if (p->l == 0) { traverse(p->child_ptr[i]); } printf(" %d", p->d[i]); } if (p->l == 0) { traverse(p->child_ptr[i]); } printf("\n"); } void sort(int *p, int n) { int i, j, t; for (i = 0; i < n; i++) { for (j = i; j <= n; j++) { if (p[i] > p[j]) { t = p[i]; p[i] = p[j]; p[j] = t; } } } } int split_child(struct BplusTree *x, int i) { int j, mid; struct BplusTree *np1, *np3, *y; np3 = init(); np3->l = 1; if (i == -1) { mid = x->d[2]; x->d[2] = 0; x->n--; np1 = init(); np1->l = 0; x->l = 1; for (j = 3; j < 6; j++) { np3->d[j - 3] = x->d[j]; np3->child_ptr[j - 3] = x->child_ptr[j]; np3->n++; x->d[j] = 0; x->n--; } for (j = 0; j < 6; j++) { x->child_ptr[j] = NULL; } np1->d[0] = mid; np1->child_ptr[np1->n] = x; np1->child_ptr[np1->n + 1] = np3; np1->n++; r = np1; } else { y = x->child_ptr[i]; mid = y->d[2]; y->d[2] = 0; y->n--; for (j = 3; j < 6; j++) { np3->d[j - 3] = y->d[j]; np3->n++; y->d[j] = 0; y->n--; } x->child_ptr[i + 1] = y; x->child_ptr[i + 1] = np3; } return mid; } void insert(int a) { int i, t; x = r; if (x == NULL) { r = init(); x = r; } else { if (x->l == 1 && x->n == 6) { t = split_child(x, -1); x = r; for (i = 0; i < x->n; i++) { if (a > x->d[i] && a < x->d[i + 1]) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } x = x->child_ptr[i]; } else { while (x->l == 0) { for (i = 0; i < x->n; i++) { if (a > x->d[i] && a < x->d[i + 1]) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } if (x->child_ptr[i]->n == 6) { t = split_child(x, i); x->d[x->n] = t; x->n++; continue; } else { x = x->child_ptr[i]; } } } } x->d[x->n] = a; sort(x->d, x->n); x->n++; } int main() { int i, n, t; insert(10); insert(20); insert(30); insert(40); insert(50); printf("Insertion Done"); printf("\nB+ tree:"); traverse(r); return 0; }
輸出
Insertion Done B+ tree: 10 20 30 40 50
#include<iostream> using namespace std; struct BplusTree { int *d; BplusTree **child_ptr; bool l; int n; } *r = NULL, *np = NULL, *x = NULL; BplusTree* init() { //to create nodes int i; np = new BplusTree; np->d = new int[6];//order 6 np->child_ptr = new BplusTree *[7]; np->l = true; np->n = 0; for (i = 0; i < 7; i++) { np->child_ptr[i] = NULL; } return np; } void traverse(BplusTree *p) { //traverse tree cout<<endl; int i; for (i = 0; i < p->n; i++) { if (p->l == false) { traverse(p->child_ptr[i]); } cout << " " << p->d[i]; } if (p->l == false) { traverse(p->child_ptr[i]); } cout<<endl; } void sort(int *p, int n) { //sort the tree int i, j, t; for (i = 0; i < n; i++) { for (j = i; j <= n; j++) { if (p[i] >p[j]) { t = p[i]; p[i] = p[j]; p[j] = t; } } } } int split_child(BplusTree *x, int i) { int j, mid; BplusTree *np1, *np3, *y; np3 = init(); np3->l = true; if (i == -1) { mid = x->d[2]; x->d[2] = 0; x->n--; np1 = init(); np1->l = false; x->l = true; for (j = 3; j < 6; j++) { np3->d[j - 3] = x->d[j]; np3->child_ptr[j - 3] = x->child_ptr[j]; np3->n++; x->d[j] = 0; x->n--; } for (j = 0; j < 6; j++) { x->child_ptr[j] = NULL; } np1->d[0] = mid; np1->child_ptr[np1->n] = x; np1->child_ptr[np1->n + 1] = np3; np1->n++; r = np1; } else { y = x->child_ptr[i]; mid = y->d[2]; y->d[2] = 0; y->n--; for (j = 3; j <6 ; j++) { np3->d[j - 3] = y->d[j]; np3->n++; y->d[j] = 0; y->n--; } x->child_ptr[i + 1] = y; x->child_ptr[i + 1] = np3; } return mid; } void insert(int a) { int i, t; x = r; if (x == NULL) { r = init(); x = r; } else { if (x->l== true && x->n == 6) { t = split_child(x, -1); x = r; for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } x = x->child_ptr[i]; } else { while (x->l == false) { for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } if ((x->child_ptr[i])->n == 6) { t = split_child(x, i); x->d[x->n] = t; x->n++; continue; } else { x = x->child_ptr[i]; } } } } x->d[x->n] = a; sort(x->d, x->n); x->n++; } int main() { int i, n, t; insert(10); insert(20); insert(30); insert(40); insert(50); cout<<"Insertion Done"; cout<<"\nB+ tree:"; traverse(r); }
輸出
Insertion Done B+ tree: 10 20 30 40 50
//Java program for Bplus code import java.util.*; class BplusTree { int[] d; BplusTree[] child_ptr; boolean l; int n; } public class Main { static BplusTree r = null, np = null, x = null; static BplusTree init() { // to create nodes int i; np = new BplusTree(); np.d = new int[6]; // order 6 np.child_ptr = new BplusTree[7]; np.l = true; np.n = 0; for (i = 0; i < 7; i++) { np.child_ptr[i] = null; } return np; } static void traverse(BplusTree p) { // traverse tree int i; for (i = 0; i < p.n; i++) { if (p.l == false) { traverse(p.child_ptr[i]); } System.out.print(" " + p.d[i]); } if (p.l == false) { traverse(p.child_ptr[i]); } System.out.println(); } static void sort(int[] p, int n) { // sort the tree int i, j, t; for (i = 0; i < n; i++) { for (j = i; j <= n; j++) { if (p[i] > p[j]) { t = p[i]; p[i] = p[j]; p[j] = t; } } } } static int split_child(BplusTree x, int i) { int j, mid; BplusTree np1, np3, y; np3 = init(); np3.l = true; if (i == -1) { mid = x.d[2]; x.d[2] = 0; x.n--; np1 = init(); np1.l = false; x.l = true; for (j = 3; j < 6; j++) { np3.d[j - 3] = x.d[j]; np3.child_ptr[j - 3] = x.child_ptr[j]; np3.n++; x.d[j] = 0; x.n--; } for (j = 0; j < 6; j++) { x.child_ptr[j] = null; } np1.d[0] = mid; np1.child_ptr[np1.n] = x; np1.child_ptr[np1.n + 1] = np3; np1.n++; r = np1; } else { y = x.child_ptr[i]; mid = y.d[2]; y.d[2] = 0; y.n--; for (j = 3; j < 6; j++) { np3.d[j - 3] = y.d[j]; np3.n++; y.d[j] = 0; y.n--; } x.child_ptr[i + 1] = y; x.child_ptr[i + 1] = np3; } return mid; } static void insert(int a) { int i, t; x = r; if (x == null) { r = init(); x = r; } else { if (x.l == true && x.n == 6) { t = split_child(x, -1); x = r; for (i = 0; i < x.n; i++) { if (a > x.d[i] && a < x.d[i + 1]) { i++; break; } else if (a < x.d[0]) { break; } else { continue; } } x = x.child_ptr[i]; } else { while (x.l == false) { for (i = 0; i < x.n; i++) { if (a > x.d[i] && a < x.d[i + 1]) { i++; break; } else if (a < x.d[0]) { break; } else { continue; } } if (x.child_ptr[i].n == 6) { t = split_child(x, i); x.d[x.n] = t; x.n++; continue; } else { x = x.child_ptr[i]; } } } } x.d[x.n] = a; sort(x.d, x.n); x.n++; } public static void main(String[] args) { int i, n, t; insert(10); insert(20); insert(30); insert(40); insert(50); System.out.print("Insertion Done"); System.out.println("\nB+ tree:"); traverse(r); } }
輸出
Insertion Done B+ tree: 10 20 30 40 50
#Python Program for Bplus tree #to create nodes class BplusTree: def __init__(self): self.d = [0] * 6 # order 6 self.child_ptr = [None] * 7 self.l = True self.n = 0 def init(): np = BplusTree() np.l = True np.n = 0 return np #traverse tree def traverse(p): for i in range(p.n): if not p.l: traverse(p.child_ptr[i]) print(" ", p.d[i], end="") if not p.l: traverse(p.child_ptr[p.n]) print() #sort the tree def sort(p, n): for i in range(n): for j in range(i, n + 1): if p[i] > p[j]: p[i], p[j] = p[j], p[i] def split_child(x, i): np3 = init() np3.l = True if i == -1: mid = x.d[2] x.d[2] = 0 x.n -= 1 np1 = init() np1.l = False x.l = True for j in range(3, 6): np3.d[j - 3] = x.d[j] np3.child_ptr[j - 3] = x.child_ptr[j] np3.n += 1 x.d[j] = 0 x.n -= 1 for j in range(6): x.child_ptr[j] = None np1.d[0] = mid np1.child_ptr[np1.n] = x np1.child_ptr[np1.n + 1] = np3 np1.n += 1 r = np1 else: y = x.child_ptr[i] mid = y.d[2] y.d[2] = 0 y.n -= 1 for j in range(3, 6): np3.d[j - 3] = y.d[j] np3.n += 1 y.d[j] = 0 y.n -= 1 x.child_ptr[i + 1] = y x.child_ptr[i + 1] = np3 return mid def insert(a): global r, x x = r if x is None: r = init() x = r else: if x.l and x.n == 6: t = split_child(x, -1) x = r for i in range(x.n): if a > x.d[i] and a < x.d[i + 1]: i += 1 break elif a < x.d[0]: break else: continue x = x.child_ptr[i] else: while not x.l: for i in range(x.n): if a > x.d[i] and a < x.d[i + 1]: i += 1 break elif a < x.d[0]: break else: continue if x.child_ptr[i].n == 6: t = split_child(x, i) x.d[x.n] = t x.n += 1 continue else: x = x.child_ptr[i] x.d[x.n] = a sort(x.d, x.n) x.n += 1 r = None x = None insert(10) insert(20) insert(30) insert(40) insert(50) print("Insertion Done") print("B+ tree:") traverse(r)
輸出
Insertion Done B+ tree: 10 20 30 40 50