
- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸進分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 雜湊表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴實現漢諾塔
- DSA - 使用遞迴實現斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大-最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心演算法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止日期的作業排序
- DSA - 最佳合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似演算法)
- 隨機化演算法
- DSA - 隨機化演算法
- DSA - 隨機化快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
頂點覆蓋演算法
你有沒有想過交通攝像頭的擺放位置?以及它們如何在不浪費政府過多預算的情況下高效地放置?答案以**頂點覆蓋演算法**的形式出現。攝像頭的放置位置以一種方式選擇,即一個攝像頭覆蓋儘可能多的道路,也就是說,我們選擇路口並確保攝像頭覆蓋儘可能大的區域。
無向圖**G = (V,E)**的**頂點覆蓋**是指圖的頂點子集,使得對於圖中的所有邊**(u,v)**,**u 和 v ∈ V**。路口被視為圖的節點,道路被視為邊。該演算法找到覆蓋最大數量道路的最小路口集。
這是一個最小化問題,因為我們找到頂點覆蓋的最小大小——頂點覆蓋的大小是其中的頂點數。最佳化問題是一個NP完全問題,因此不能在多項式時間內解決;但可以在多項式時間內找到的是近似最優解。
頂點覆蓋演算法
頂點覆蓋近似演算法以無向圖作為輸入,並執行以獲得一組頂點,該頂點的數量肯定是不小於最優頂點覆蓋的兩倍。
頂點覆蓋是一個2-近似演算法。
演算法
**步驟1** - 從輸入圖中選擇任意一條邊,並標記與該邊對應的頂點相關聯的所有邊。
**步驟2** - 將任意邊的頂點新增到輸出集中。
**步驟3** - 對圖中剩餘的未標記邊重複步驟1,並將選擇的頂點新增到輸出中,直到沒有未標記的邊。
**步驟4** - 最終得到的輸出集將是近似最優的頂點覆蓋。
虛擬碼
APPROX-VERTEX_COVER (G: Graph) c ← { } E’ ← E[G] while E’ is not empty do Let (u, v) be an arbitrary edge of E’ c ← c U {u, v} Remove from E’ every edge incident on either u or v return c
示例
給定圖的邊集為:
{(1,6),(1,2),(1,4),(2,3),(2,4),(6,7),(4,7),(7,8),(3,5),(8,5)}

現在,我們從選擇任意邊(1,6)開始。我們消去所有與頂點1或6相關聯的邊,並將邊(1,6)新增到覆蓋中。

在下一步中,我們隨機選擇了另一條邊(2,3)。

現在我們選擇另一條邊(4,7)。

我們選擇另一條邊(8,5)。

因此,該圖的頂點覆蓋為{1,6,2,3,4,7,5,8}。
分析
很容易看出該演算法的執行時間為O(V + E),使用鄰接表來表示E'。
實現
以下是上述方法在各種程式語言中的實現:
#include <stdio.h> #include <stdbool.h> #define MAX_VERTICES 100 int graph[MAX_VERTICES][MAX_VERTICES]; bool included[MAX_VERTICES]; // Function to find Vertex Cover using the APPROX-VERTEX_COVER algorithm void approxVertexCover(int vertices, int edges) { bool edgesRemaining[MAX_VERTICES][MAX_VERTICES]; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { edgesRemaining[i][j] = graph[i][j]; } } while (edges > 0) { int u, v; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { if (edgesRemaining[i][j]) { u = i; v = j; break; } } } included[u] = included[v] = true; for (int i = 0; i < vertices; i++) { edgesRemaining[u][i] = edgesRemaining[i][u] = false; edgesRemaining[v][i] = edgesRemaining[i][v] = false; } edges--; } } int main() { int vertices = 8; int edges = 10; int edgesData[10][2] = { {1, 6}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {6, 7}, {4, 7}, {7, 8}, {3, 5}, {8, 5}}; for (int i = 0; i < edges; i++) { int u = edgesData[i][0]; int v = edgesData[i][1]; graph[u][v] = graph[v][u] = 1; } approxVertexCover(vertices, edges); printf("Vertex Cover: "); for (int i = 1; i <= vertices; i++) { if (included[i]) { printf("%d ", i); } } printf("\n"); return 0; }
輸出
Vertex Cover: 1 3 4 5 6 7
#include <iostream> #include <vector> using namespace std; const int MAX_VERTICES = 100; vector<vector<int>> graph(MAX_VERTICES, vector<int>(MAX_VERTICES, 0)); vector<bool> included(MAX_VERTICES, false); // Function to find Vertex Cover using the APPROX-VERTEX_COVER algorithm void approxVertexCover(int vertices, int edges) { vector<vector<bool>> edgesRemaining(vertices, vector<bool>(vertices, false)); for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { edgesRemaining[i][j] = graph[i][j]; } } while (edges > 0) { int u, v; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { if (edgesRemaining[i][j]) { u = i; v = j; break; } } } included[u] = included[v] = true; for (int i = 0; i < vertices; i++) { edgesRemaining[u][i] = edgesRemaining[i][u] = false; edgesRemaining[v][i] = edgesRemaining[i][v] = false; } edges--; } } int main() { int vertices = 8; int edges = 10; int edgesData[10][2] = { {1, 6}, {1, 2}, {1, 4}, {2, 3}, {2, 4}, {6, 7}, {4, 7}, {7, 8}, {3, 5}, {8, 5}}; for (int i = 0; i < edges; i++) { int u = edgesData[i][0]; int v = edgesData[i][1]; graph[u][v] = graph[v][u] = 1; } approxVertexCover(vertices, edges); cout << "Vertex Cover: "; for (int i = 1; i <= vertices; i++) { if (included[i]) { cout << i << " "; } } cout << endl; return 0; }
輸出
Vertex Cover: 1 3 4 5 6 7
import java.util.ArrayList; import java.util.List; public class Main { static final int MAX_VERTICES = 100; static int[][] graph = new int[MAX_VERTICES][MAX_VERTICES]; static boolean[] included = new boolean[MAX_VERTICES]; public static void approx_vertex_cover(int vertices, int edges) { int[][] edges_remaining = new int[MAX_VERTICES][MAX_VERTICES]; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { edges_remaining[i][j] = graph[i][j]; } } while (edges > 0) { int u = 1, v = 1; for (int i = 0; i < vertices; i++) { for (int j = 0; j < vertices; j++) { if (edges_remaining[i][j] != 0) { u = i; v = j; break; } } } included[u] = included[v] = true; for (int i = 0; i < vertices; i++) { edges_remaining[u][i] = edges_remaining[i][u] = 0; edges_remaining[v][i] = edges_remaining[i][v] = 0; } edges--; } } public static void main(String[] args) { int vertices = 8; int edges = 10; List<int[]> edges_data = new ArrayList<>(); edges_data.add(new int[] {1, 6}); edges_data.add(new int[] {1, 2}); edges_data.add(new int[] {1, 4}); edges_data.add(new int[] {2, 3}); edges_data.add(new int[] {2, 4}); edges_data.add(new int[] {6, 7}); edges_data.add(new int[] {4, 7}); edges_data.add(new int[] {7, 8}); edges_data.add(new int[] {3, 5}); edges_data.add(new int[] {8, 5}); for (int[] edge : edges_data) { int u = edge[0]; int v = edge[1]; graph[u][v] = graph[v][u] = 1; } approx_vertex_cover(vertices, edges); System.out.print("Vertex Cover: "); for (int i = 1; i <= vertices; i++) { if (included[i]) { System.out.print(i + " "); } } System.out.println(); } }
輸出
Vertex Cover: 1 3 4 5 6 7
MAX_VERTICES = 100 graph = [[0 for _ in range(MAX_VERTICES)] for _ in range(MAX_VERTICES)] included = [False for _ in range(MAX_VERTICES)] # Function to find Vertex Cover using the APPROX-VERTEX_COVER algorithm def approx_vertex_cover(vertices, edges): edges_remaining = [row[:] for row in graph] while edges > 0: for i in range(vertices): for j in range(vertices): if edges_remaining[i][j]: u = i v = j break included[u] = included[v] = True for i in range(vertices): edges_remaining[u][i] = edges_remaining[i][u] = False edges_remaining[v][i] = edges_remaining[i][v] = False edges -= 1 if __name__ == "__main__": vertices = 8 edges = 10 edges_data = [(1, 6), (1, 2), (1, 4), (2, 3), (2, 4), (6, 7), (4, 7), (7, 8), (3, 5), (8, 5)] for u, v in edges_data: graph[u][v] = graph[v][u] = 1 approx_vertex_cover(vertices, edges) print("Vertex Cover:", end=" ") for i in range(1, vertices + 1): if included[i]: print(i, end=" ") print()
輸出
Vertex Cover: 1 3 4 5 6 7
廣告