
- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸近分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 雜湊表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴的漢諾塔
- DSA - 使用遞迴的斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止日期的作業排序
- DSA - 最優合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃法)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似法)
- 隨機化演算法
- DSA - 隨機化演算法
- DSA - 隨機化快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
使用遞迴的斐波那契數列
使用遞迴的斐波那契數列
斐波那契數列透過將前兩個數相加來生成後續的數。斐波那契數列從兩個數開始——F0 & F1。F0 & F1的初始值可以分別取0, 1或1, 1。斐波那契數列滿足以下條件:
Fn = Fn-1 + Fn-2
因此,斐波那契數列可能如下所示:
F8 = 0 1 1 2 3 5 8 13
或者:
F8 = 1 1 2 3 5 8 13 21
為了說明目的,F8的斐波那契數列顯示為:

斐波那契迭代演算法
首先,我們嘗試編寫斐波那契數列的迭代演算法。
Procedure Fibonacci(n) declare f0, f1, fib, loop set f0 to 0 set f1 to 1 <b>display f0, f1</b> for loop ← 1 to n fib ← f0 + f1 f0 ← f1 f1 ← fib <b>display fib</b> end for end procedure
斐波那契遞迴演算法
讓我們學習如何建立一個遞迴演算法斐波那契數列。遞迴的基本條件。
START Procedure Fibonacci(n) declare f0, f1, fib, loop set f0 to 0 set f1 to 1 display f0, f1 for loop ← 1 to n fib ← f0 + f1 f0 ← f1 f1 ← fib display fib end for END
示例
以下是以上方法在各種程式語言中的實現:
#include <stdio.h> int fibbonacci(int n) { if(n == 0){ return 0; } else if(n == 1) { return 1; } else { return (fibbonacci(n-1) + fibbonacci(n-2)); } } int main() { int n = 5; printf("Number is: %d", n); printf("\nFibonacci series upto number %d are: ", n); for(int i = 0;i<n;i++) { printf("%d ",fibbonacci(i)); } }
輸出
Number is: 5 Fibonacci series upto number 5 are: 0 1 1 2 3
// C++ Code for Fibonacci series #include <iostream> using namespace std; int fibbonacci(int n) { if(n == 0){ return 0; } else if(n == 1) { return 1; } else { return (fibbonacci(n-1) + fibbonacci(n-2)); } } int main() { int n = 5; cout<<"Number is: "<<n; cout << "\nFibbonacci series upto number "<<n<< " are: "; for(int i = 0;i<n;i++) { cout << fibbonacci(i) << " "; } }
輸出
Number is: 5 Fibbonacci series upto number 5 are: 0 1 1 2 3
// Java Code for Fibonacci series public class Fibonacci { public static int fibonacci(int n) { if (n == 0) { return 0; } else if (n == 1) { return 1; } else { return fibonacci(n - 1) + fibonacci(n - 2); } } public static void main(String[] args) { int n = 5; System.out.print("Number is: " + n); System.out.print("\nFibonacci series upto number " + n + ": "); for (int i = 0; i < n; i++) { System.out.print(fibonacci(i) + " "); } } }
輸出
Number is: 5 Fibonacci series upto number 5: 0 1 1 2 3
#Python code for fibonacci Series def fibonacci(n): if n == 0: return 0 elif n == 1: return 1 else: return fibonacci(n-1) + fibonacci(n-2) if __name__ == "__main__": n = 5 print("Number is ", n) print("Fibonacci series upto number ",n, "are: ") for i in range(n): print(fibonacci(i) , end = " ")
輸出
Number is 5 Fibonacci series upto number 5 are: 0 1 1 2 3
廣告