
- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸近分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 散列表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - Trie樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴實現漢諾塔
- DSA - 使用遞迴實現斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心演算法)
- DSA - Prim最小生成樹演算法
- DSA - Kruskal最小生成樹演算法
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止日期的作業排序
- DSA - 最優合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似演算法)
- 隨機化演算法
- DSA - 隨機化演算法
- DSA - 隨機化快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
C語言中的廣度優先遍歷
我們將不會看到C程式語言中廣度優先遍歷(或廣度優先搜尋)的實現。為了參考,我們將遵循我們的示例,並將此作為我們的圖模型:

C語言實現
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #define MAX 5 struct Vertex { char label; bool visited; }; //queue variables int queue[MAX]; int rear = -1; int front = 0; int queueItemCount = 0; //graph variables //array of vertices struct Vertex* lstVertices[MAX]; //adjacency matrix int adjMatrix[MAX][MAX]; //vertex count int vertexCount = 0; //queue functions void insert(int data) { queue[++rear] = data; queueItemCount++; } int removeData() { queueItemCount--; return queue[front++]; } bool isQueueEmpty() { return queueItemCount == 0; } //graph functions //add vertex to the vertex list void addVertex(char label) { struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex)); vertex->label = label; vertex->visited = false; lstVertices[vertexCount++] = vertex; } //add edge to edge array void addEdge(int start,int end) { adjMatrix[start][end] = 1; adjMatrix[end][start] = 1; } //display the vertex void displayVertex(int vertexIndex) { printf("%c ",lstVertices[vertexIndex]->label); } //get the adjacent unvisited vertex int getAdjUnvisitedVertex(int vertexIndex) { int i; for(i = 0; i<vertexCount; i++) { if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false) return i; } return -1; } void breadthFirstSearch() { int i; //mark first node as visited lstVertices[0]->visited = true; //display the vertex displayVertex(0); //insert vertex index in queue insert(0); int unvisitedVertex; while(!isQueueEmpty()) { //get the unvisited vertex of vertex which is at front of the queue int tempVertex = removeData(); //no adjacent vertex found while((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) { lstVertices[unvisitedVertex]->visited = true; displayVertex(unvisitedVertex); insert(unvisitedVertex); } } //queue is empty, search is complete, reset the visited flag for(i = 0;i<vertexCount;i++) { lstVertices[i]->visited = false; } } int main() { int i, j; for(i = 0; i<MAX; i++) { // set adjacency for(j = 0; j<MAX; j++) // matrix to 0 adjMatrix[i][j] = 0; } addVertex('S'); // 0 addVertex('A'); // 1 addVertex('B'); // 2 addVertex('C'); // 3 addVertex('D'); // 4 addEdge(0, 1); // S - A addEdge(0, 2); // S - B addEdge(0, 3); // S - C addEdge(1, 4); // A - D addEdge(2, 4); // B - D addEdge(3, 4); // C - D printf("\nBreadth First Search: "); breadthFirstSearch(); return 0; }
如果我們編譯並執行上面的程式,它將產生以下結果:
輸出
Breadth First Search: S A B C D
breadth_first_traversal.htm
廣告