- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸進分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 雜湊表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴實現漢諾塔
- DSA - 使用遞迴實現斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心演算法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止日期的作業排序
- DSA - 最佳合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似演算法)
- 隨機演算法
- DSA - 隨機演算法
- DSA - 隨機快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA實用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 實用資源
- DSA - 討論
C語言插入排序程式
這是一種基於比較的原地排序演算法。在此,維護一個始終排序的子列表。例如,陣列的下部保持排序狀態。要“插入”到此排序子列表中的元素必須找到其適當的位置,然後將其插入到該位置。因此得名插入排序。
C語言實現
#include <stdio.h>
#include <stdbool.h>
#define MAX 7
int intArray[MAX] = {4,6,3,2,1,9,7};
void printline(int count) {
int i;
for(i = 0;i < count-1;i++) {
printf("=");
}
printf("=\n");
}
void display() {
int i;
printf("[");
// navigate through all items
for(i = 0;i < MAX;i++) {
printf("%d ",intArray[i]);
}
printf("]\n");
}
void insertionSort() {
int valueToInsert;
int holePosition;
int i;
// loop through all numbers
for(i = 1; i < MAX; i++) {
// select a value to be inserted.
valueToInsert = intArray[i];
// select the hole position where number is to be inserted
holePosition = i;
// check if previous no. is larger than value to be inserted
while (holePosition > 0 && intArray[holePosition-1] > valueToInsert) {
intArray[holePosition] = intArray[holePosition-1];
holePosition--;
printf(" item moved : %d\n" , intArray[holePosition]);
}
if(holePosition != i) {
printf(" item inserted : %d, at position : %d\n" , valueToInsert,holePosition);
// insert the number at hole position
intArray[holePosition] = valueToInsert;
}
printf("Iteration %d#:",i);
display();
}
}
void main() {
printf("Input Array: ");
display();
printline(50);
insertionSort();
printf("Output Array: ");
display();
printline(50);
}
如果我們編譯並執行以上程式,它將產生以下結果:
輸出
Input Array: [4 6 3 2 1 9 7 ] ================================================== Iteration 1#:[4 6 3 2 1 9 7 ] item moved : 6 item moved : 4 item inserted : 3, at position : 0 Iteration 2#:[3 4 6 2 1 9 7 ] item moved : 6 item moved : 4 item moved : 3 item inserted : 2, at position : 0 Iteration 3#:[2 3 4 6 1 9 7 ] item moved : 6 item moved : 4 item moved : 3 item moved : 2 item inserted : 1, at position : 0 Iteration 4#:[1 2 3 4 6 9 7 ] Iteration 5#:[1 2 3 4 6 9 7 ] item moved : 9 item inserted : 7, at position : 5 Iteration 6#:[1 2 3 4 6 7 9 ] Output Array: [1 2 3 4 6 7 9 ] ==================================================
insertion_sort_algorithm.htm
廣告