- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境搭建
- DSA - 演算法基礎
- DSA - 漸進分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 雜湊表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹的遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴實現漢諾塔
- DSA - 使用遞迴實現斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大-最小問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止日期的作業排序
- DSA - 最佳合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃法)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似法)
- 隨機演算法
- DSA - 隨機演算法
- DSA - 隨機快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
C語言二分查詢程式
二分查詢是一種快速搜尋演算法,其執行時間複雜度為Ο(log n)。這種搜尋演算法基於分治的原理。為了使該演算法正常工作,資料集合必須按排序形式排列。
C語言實現
#include <stdio.h>
#define MAX 20
// array of items on which linear search will be conducted.
int intArray[MAX] = {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};
void printline(int count) {
int i;
for(i = 0;i <count-1;i++) {
printf("=");
}
printf("=\n");
}
int find(int data) {
int lowerBound = 0;
int upperBound = MAX -1;
int midPoint = -1;
int comparisons = 0;
int index = -1;
while(lowerBound <= upperBound) {
printf("Comparison %d\n" , (comparisons +1) );
printf("lowerBound : %d, intArray[%d] = %d\n",lowerBound,lowerBound,
intArray[lowerBound]);
printf("upperBound : %d, intArray[%d] = %d\n",upperBound,upperBound,
intArray[upperBound]);
comparisons++;
// compute the mid point
// midPoint = (lowerBound + upperBound) / 2;
midPoint = lowerBound + (upperBound - lowerBound) / 2;
// data found
if(intArray[midPoint] == data) {
index = midPoint;
break;
} else {
// if data is larger
if(intArray[midPoint] < data) {
// data is in upper half
lowerBound = midPoint + 1;
}
// data is smaller
else {
// data is in lower half
upperBound = midPoint -1;
}
}
}
printf("Total comparisons made: %d" , comparisons);
return index;
}
void display() {
int i;
printf("[");
// navigate through all items
for(i = 0;i<MAX;i++) {
printf("%d ",intArray[i]);
}
printf("]\n");
}
void main() {
printf("Input Array: ");
display();
printline(50);
//find location of 1
int location = find(55);
// if element was found
if(location != -1)
printf("\nElement found at location: %d" ,(location+1));
else
printf("\nElement not found.");
}
輸出
如果我們編譯並執行上述程式,則會產生以下結果:
Input Array: [1 2 3 4 6 7 9 11 12 14 15 16 17 19 33 34 43 45 55 66 ] ================================================== Comparison 1 lowerBound : 0, intArray[0] = 1 upperBound : 19, intArray[19] = 66 Comparison 2 lowerBound : 10, intArray[10] = 15 upperBound : 19, intArray[19] = 66 Comparison 3 lowerBound : 15, intArray[15] = 34 upperBound : 19, intArray[19] = 66 Comparison 4 lowerBound : 18, intArray[18] = 55 upperBound : 19, intArray[19] = 66 Total comparisons made: 4 Element found at location: 19
binary_search_algorithm.htm
廣告