
- 資料結構與演算法
- DSA - 首頁
- DSA - 概述
- DSA - 環境設定
- DSA - 演算法基礎
- DSA - 漸進分析
- 資料結構
- DSA - 資料結構基礎
- DSA - 資料結構和型別
- DSA - 陣列資料結構
- 連結串列
- DSA - 連結串列資料結構
- DSA - 雙向連結串列資料結構
- DSA - 迴圈連結串列資料結構
- 棧與佇列
- DSA - 棧資料結構
- DSA - 表示式解析
- DSA - 佇列資料結構
- 搜尋演算法
- DSA - 搜尋演算法
- DSA - 線性搜尋演算法
- DSA - 二分搜尋演算法
- DSA - 插值搜尋
- DSA - 跳躍搜尋演算法
- DSA - 指數搜尋
- DSA - 斐波那契搜尋
- DSA - 子列表搜尋
- DSA - 雜湊表
- 排序演算法
- DSA - 排序演算法
- DSA - 氣泡排序演算法
- DSA - 插入排序演算法
- DSA - 選擇排序演算法
- DSA - 歸併排序演算法
- DSA - 希爾排序演算法
- DSA - 堆排序
- DSA - 桶排序演算法
- DSA - 計數排序演算法
- DSA - 基數排序演算法
- DSA - 快速排序演算法
- 圖資料結構
- DSA - 圖資料結構
- DSA - 深度優先遍歷
- DSA - 廣度優先遍歷
- DSA - 生成樹
- 樹資料結構
- DSA - 樹資料結構
- DSA - 樹遍歷
- DSA - 二叉搜尋樹
- DSA - AVL樹
- DSA - 紅黑樹
- DSA - B樹
- DSA - B+樹
- DSA - 伸展樹
- DSA - 字典樹
- DSA - 堆資料結構
- 遞迴
- DSA - 遞迴演算法
- DSA - 使用遞迴實現漢諾塔
- DSA - 使用遞迴實現斐波那契數列
- 分治法
- DSA - 分治法
- DSA - 最大最小值問題
- DSA - Strassen矩陣乘法
- DSA - Karatsuba演算法
- 貪心演算法
- DSA - 貪心演算法
- DSA - 旅行商問題(貪心法)
- DSA - Prim最小生成樹
- DSA - Kruskal最小生成樹
- DSA - Dijkstra最短路徑演算法
- DSA - 地圖著色演算法
- DSA - 分數揹包問題
- DSA - 帶截止期限的作業排序
- DSA - 最優合併模式演算法
- 動態規劃
- DSA - 動態規劃
- DSA - 矩陣鏈乘法
- DSA - Floyd-Warshall演算法
- DSA - 0-1揹包問題
- DSA - 最長公共子序列演算法
- DSA - 旅行商問題(動態規劃法)
- 近似演算法
- DSA - 近似演算法
- DSA - 頂點覆蓋演算法
- DSA - 集合覆蓋問題
- DSA - 旅行商問題(近似演算法)
- 隨機化演算法
- DSA - 隨機化演算法
- DSA - 隨機化快速排序演算法
- DSA - Karger最小割演算法
- DSA - Fisher-Yates洗牌演算法
- DSA有用資源
- DSA - 問答
- DSA - 快速指南
- DSA - 有用資源
- DSA - 討論
拔河問題
什麼是拔河問題?
在拔河問題中,給定一組整數,我們的任務是將它們分成兩部分,使得兩個子集的和的差儘可能小。換句話說,將集合分成兩個實力大致相等的組,以參加拔河比賽。當集合大小為偶數時,將其分成兩部分更容易。用奇數個專案這樣做會比較困難。因此,對劃分有一些定義的約束。
如果子集N的大小為偶數,可以使用N/2將其分成兩部分,但對於奇數N,一個子集的大小必須為(N-1)/2,另一個子集的大小必須為(N+1)/2。
使用回溯法解決拔河問題
假設給定的集合大小為奇數:
Set = {23, 45, -34, 12, 0, 98, -99, 4, 189, -1, 4}
當我們分配權重以使差異最小化時,結果子集將是:
Left: {45, -34, 12, 98, -1} Right: {23, 0, -99, 4, 189, 4}

以下步驟解釋瞭如何使用回溯法來解決拔河問題:
首先建立一個空子集,稱為左子集。
用原始集合中所需數量的元素填充這個空子集。所需元素的數量取決於原始集合的大小。如果大小為奇數,則子集應填充 (N-1)/2 個元素;如果大小為偶數,則子集的大小應為 N/2。
檢查填充元素的差是否遵循給定的約束條件。如果遵循,則將其標記為解決方案的一部分。
如果差異不是最小值,則嘗試其他組合並更新現有解決方案。
一旦第一個子集被填充,其餘元素將自動成為第二個子集的一部分。
示例
在下面的示例中,我們將實際演示如何解決拔河問題。
#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <limits.h> #include <math.h> void tgOfWarSoln(int* weight, int n, bool curr[], int select, bool sol[], int *diff, int sum, int total, int pos) { //when the pos is covered all weights if (pos == n) return; //left elements must be bigger than required result if ((n/2 - select) > (n - pos)) return; tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos+1); select++; total += weight[pos]; //add current element to the solution curr[pos] = true; //when solution is formed if (select == n/2) { //check whether it is better solution or not if (abs(sum/2 - total) < *diff) { *diff = abs(sum/2 - total); for (int i = 0; i<n; i++) sol[i] = curr[i]; } } else { tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos+1); } //when not properly done, remove current element curr[pos] = false; } void checkSolution(int *arr, int n) { bool* curr = (bool*)malloc(n*sizeof(bool)); bool* soln = (bool*)malloc(n*sizeof(bool)); //set minimum difference to infinity initially int diff = INT_MAX; int sum = 0; for (int i=0; i<n; i++) { //find the sum of all elements sum += arr[i]; //make all elements as false curr[i] = soln[i] = false; } tgOfWarSoln(arr, n, curr, 0, soln, &diff, sum, 0, 0); printf("Left: "); for (int i=0; i<n; i++) if (soln[i] == true) printf("%d ", arr[i]); printf("\nRight: "); for (int i=0; i<n; i++) if (soln[i] == false) printf("%d ", arr[i]); printf("\n"); free(curr); free(soln); } int main() { int weight[] = {23, 45, -34, 12, 0, 98, -99, 4, 189, -1, 4}; int n = 11; checkSolution(weight, n); return 0; }
#include <iostream> #include <cmath> #include <climits> using namespace std; void tgOfWarSoln(int* weight, int n, bool curr[], int select, bool sol[], int &diff, int sum, int total, int pos) { //when the pos is covered all weights if (pos == n) return; //left elements must be bigger than required result if ((n/2 - select) > (n - pos)) return; tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos+1); select++; total += weight[pos]; //add current element to the solution curr[pos] = true; //when solution is formed if (select == n/2) { //check whether it is better solution or not if (abs(sum/2 - total) < diff) { diff = abs(sum/2 - total); for (int i = 0; i<n; i++) sol[i] = curr[i]; } } else { tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos+1); } //when not properly done, remove current element curr[pos] = false; } void checkSolution(int *arr, int n) { bool* curr = new bool[n]; bool* soln = new bool[n]; //set minimum difference to infinity initially int diff = INT_MAX; int sum = 0; for (int i=0; i<n; i++) { //find the sum of all elements sum += arr[i]; //make all elements as false curr[i] = soln[i] = false; } tgOfWarSoln(arr, n, curr, 0, soln, diff, sum, 0, 0); cout << "Left: "; for (int i=0; i<n; i++) if (soln[i] == true) cout << arr[i] << " "; cout << endl << "Right: "; for (int i=0; i<n; i++) if (soln[i] == false) cout << arr[i] << " "; } int main() { int weight[] = {23, 45, -34, 12, 0, 98, -99, 4, 189, -1, 4}; int n = 11; checkSolution(weight, n); }
public class Main { static void tgOfWarSoln(int[] weight, int n, boolean[] curr, int select, boolean[] sol, int[] diff, int sum, int total, int pos) { //when the pos is covered all weights if (pos == n) return; //left elements must be bigger than required result if ((n / 2 - select) > (n - pos)) return; tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos + 1); select++; //add current element to the solution total += weight[pos]; curr[pos] = true; //when solution is formed if (select == n / 2) { //check whether it is better solution or not if (Math.abs(sum / 2 - total) < diff[0]) { diff[0] = Math.abs(sum / 2 - total); for (int i = 0; i < n; i++) sol[i] = curr[i]; } } else { tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos + 1); } //when not properly done, remove current element curr[pos] = false; } static void checkSolution(int[] arr, int n) { boolean[] curr = new boolean[n]; boolean[] soln = new boolean[n]; //set minimum difference to infinity initially int[] diff = {Integer.MAX_VALUE}; int sum = 0; for (int i = 0; i < n; i++) { //find the sum of all elements sum += arr[i]; //make all elements as false curr[i] = soln[i] = false; } tgOfWarSoln(arr, n, curr, 0, soln, diff, sum, 0, 0); System.out.print("Left: "); for (int i = 0; i < n; i++) if (soln[i] == true) System.out.print(arr[i] + " "); System.out.println(); System.out.print("Right: "); for (int i = 0; i < n; i++) if (soln[i] == false) System.out.print(arr[i] + " "); } public static void main(String[] args) { int[] weight = {23, 45, -34, 12, 0, 98, -99, 4, 189, -1, 4}; int n = 11; checkSolution(weight, n); } }
def tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos): if pos == n: return if (n // 2 - select) > (n - pos): return tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos + 1) select += 1 total += weight[pos] curr[pos] = True if select == n // 2: if abs(sum // 2 - total) < diff[0]: diff[0] = abs(sum // 2 - total) for i in range(n): sol[i] = curr[i] else: tgOfWarSoln(weight, n, curr, select, sol, diff, sum, total, pos + 1) curr[pos] = False def checkSolution(arr, n): curr = [False] * n soln = [False] * n diff = [float('inf')] sum = 0 for i in range(n): sum += arr[i] curr[i] = soln[i] = False tgOfWarSoln(arr, n, curr, 0, soln, diff, sum, 0, 0) print("Left: ", end="") for i in range(n): if soln[i] == True: print(arr[i], end=" ") print() print("Right: ", end="") for i in range(n): if soln[i] == False: print(arr[i], end=" ") weight = [23, 45, -34, 12, 0, 98, -99, 4, 189, -1, 4] n = 11 checkSolution(weight, n)
輸出
Left: 45 -34 12 98 -1 Right: 23 0 -99 4 189 4
廣告