- 密碼學教程
- 密碼學 - 首頁
- 密碼學 - 起源
- 密碼學 - 歷史
- 密碼學 - 原理
- 密碼學 - 應用
- 密碼學 - 優點與缺點
- 密碼學 - 現代
- 密碼學 - 傳統密碼
- 密碼學 - 加密的需求
- 密碼學 - 雙重強度加密
- 密碼系統
- 密碼系統
- 密碼系統 - 元件
- 密碼系統的攻擊
- 密碼系統 - 彩虹表攻擊
- 密碼系統 - 字典攻擊
- 密碼系統 - 暴力攻擊
- 密碼系統 - 密碼分析技術
- 密碼學的型別
- 密碼系統 - 型別
- 公鑰加密
- 現代對稱金鑰加密
- 密碼學雜湊函式
- 金鑰管理
- 密碼系統 - 金鑰生成
- 密碼系統 - 金鑰儲存
- 密碼系統 - 金鑰分發
- 密碼系統 - 金鑰吊銷
- 分組密碼
- 密碼系統 - 流密碼
- 密碼學 - 分組密碼
- 密碼學 - Feistel 分組密碼
- 分組密碼的工作模式
- 分組密碼的工作模式
- 電子密碼本 (ECB) 模式
- 密碼分組連結 (CBC) 模式
- 密碼反饋 (CFB) 模式
- 輸出反饋 (OFB) 模式
- 計數器 (CTR) 模式
- 經典密碼
- 密碼學 - 反向密碼
- 密碼學 - 凱撒密碼
- 密碼學 - ROT13 演算法
- 密碼學 - 換位密碼
- 密碼學 - 加密換位密碼
- 密碼學 - 解密換位密碼
- 密碼學 - 乘法密碼
- 密碼學 - 仿射密碼
- 密碼學 - 簡單替換密碼
- 密碼學 - 簡單替換密碼的加密
- 密碼學 - 簡單替換密碼的解密
- 密碼學 - 維吉尼亞密碼
- 密碼學 - 維吉尼亞密碼的實現
- 現代密碼
- Base64 編碼和解碼
- 密碼學 - XOR 加密
- 替換技術
- 密碼學 - 單表替換密碼
- 密碼學 - 單表替換密碼的破解
- 密碼學 - 多表替換密碼
- 密碼學 - Playfair 密碼
- 密碼學 - 希爾密碼
- 多表替換密碼
- 密碼學 - 一次性密碼本密碼
- 一次性密碼本密碼的實現
- 密碼學 - 換位技術
- 密碼學 - 柵欄密碼
- 密碼學 - 列置換
- 密碼學 - 密碼隱寫術
- 對稱演算法
- 密碼學 - 資料加密
- 密碼學 - 加密演算法
- 密碼學 - 資料加密標準
- 密碼學 - 三重 DES
- 密碼學 - 雙重 DES
- 高階加密標準
- 密碼學 - AES 結構
- 密碼學 - AES 變換函式
- 密碼學 - 位元組替換變換
- 密碼學 - 行移位變換
- 密碼學 - 列混合變換
- 密碼學 - 輪金鑰加變換
- 密碼學 - AES 金鑰擴充套件演算法
- 密碼學 - Blowfish 演算法
- 密碼學 - SHA 演算法
- 密碼學 - RC4 演算法
- 密碼學 - Camellia 加密演算法
- 密碼學 - ChaCha20 加密演算法
- 密碼學 - CAST5 加密演算法
- 密碼學 - SEED 加密演算法
- 密碼學 - SM4 加密演算法
- IDEA - 國際資料加密演算法
- 公鑰(非對稱)密碼學演算法
- 密碼學 - RSA 演算法
- 密碼學 - RSA 加密
- 密碼學 - RSA 解密
- 密碼學 - 建立 RSA 金鑰
- 密碼學 - 破解 RSA 密碼
- 密碼學 - ECDSA 演算法
- 密碼學 - DSA 演算法
- 密碼學 - Diffie-Hellman 演算法
- 密碼學中的資料完整性
- 密碼學中的資料完整性
- 訊息認證
- 密碼學數字簽名
- 公鑰基礎設施
- 雜湊
- MD5(訊息摘要演算法 5)
- SHA-1(安全雜湊演算法 1)
- SHA-256(安全雜湊演算法 256 位)
- SHA-512(安全雜湊演算法 512 位)
- SHA-3(安全雜湊演算法 3)
- 雜湊密碼
- Bcrypt 雜湊模組
- 現代密碼學
- 量子密碼學
- 後量子密碼學
- 密碼協議
- 密碼學 - SSL/TLS 協議
- 密碼學 - SSH 協議
- 密碼學 - IPsec 協議
- 密碼學 - PGP 協議
- 影像和檔案加密
- 密碼學 - 影像
- 密碼學 - 檔案
- 密碼隱寫術 - 影像
- 檔案加密和解密
- 密碼學 - 檔案加密
- 密碼學 - 檔案解密
- 物聯網中的密碼學
- 物聯網安全挑戰、威脅和攻擊
- 物聯網安全的加密技術
- 物聯網裝置的通訊協議
- 常用加密技術
- 自定義構建加密演算法(混合加密)
- 雲密碼學
- 量子密碼學
- 密碼學中的影像隱寫術
- DNA 密碼學
- 密碼學中的一次性密碼 (OTP) 演算法
- 之間的區別
- 密碼學 - MD5 與 SHA1
- 密碼學 - RSA 與 DSA
- 密碼學 - RSA 與 Diffie-Hellman
- 密碼學與密碼學
- 密碼學 - 密碼學與密碼分析
- 密碼學 - 經典與量子
- 密碼學與隱寫術
- 密碼學與加密
- 密碼學與網路安全
- 密碼學 - 流密碼與分組密碼
- 密碼學 - AES 與 DES 密碼
- 密碼學 - 對稱與非對稱
- 密碼學有用資源
- 密碼學 - 快速指南
- 密碼學 - 討論
密碼學中的資料完整性
到目前為止,我們討論了使用對稱和公鑰方案來實現資訊機密性的方法。從本章開始,我們將討論旨在提供其他安全服務的不同加密技術。
本章的重點是資料完整性和用於實現相同目標的加密工具。
資料完整性威脅
在交換敏感資訊時,接收方必須確信訊息完整地來自預期傳送方,並且沒有被無意或有意修改。資料完整性威脅有兩種不同的型別,即被動和主動。
被動威脅
此類威脅是由於資料意外更改而產生的。
這些資料錯誤可能是由於通訊通道中的噪聲引起的。此外,資料在儲存在磁碟上時也可能損壞。
糾錯碼和簡單的校驗和(如迴圈冗餘校驗 (CRC))用於檢測資料完整性的丟失。在這些技術中,會對資料進行數學計算並生成摘要,然後將其附加到資料中。
主動威脅
在這種型別的威脅中,攻擊者可以出於惡意目的操縱資料。
在最簡單的層面上,如果資料沒有摘要,則可以在未檢測到的情況下對其進行修改。系統可以使用附加 CRC 到資料以檢測任何主動修改的技術。
在更高級別的威脅中,攻擊者可能會修改資料並嘗試從現有摘要中為修改後的資料匯出新的摘要。如果摘要是使用 CRC 等簡單機制計算的,則這是可能的。
諸如雜湊函式之類的安全機制用於解決主動修改威脅。
廣告