
- 機器學習基礎
- ML - 首頁
- ML - 簡介
- ML - 開始學習
- ML - 基本概念
- ML - 生態系統
- ML - Python 庫
- ML - 應用
- ML - 生命週期
- ML - 必備技能
- ML - 實現
- ML - 挑戰與常見問題
- ML - 侷限性
- ML - 真實案例
- ML - 資料結構
- ML - 數學基礎
- ML - 人工智慧
- ML - 神經網路
- ML - 深度學習
- ML - 獲取資料集
- ML - 分類資料
- ML - 資料載入
- ML - 資料理解
- ML - 資料準備
- ML - 模型
- ML - 監督學習
- ML - 無監督學習
- ML - 半監督學習
- ML - 強化學習
- ML - 監督學習 vs. 無監督學習
- 機器學習資料視覺化
- ML - 資料視覺化
- ML - 直方圖
- ML - 密度圖
- ML - 箱線圖
- ML - 相關矩陣圖
- ML - 散點矩陣圖
- 機器學習統計學
- ML - 統計學
- ML - 均值、中位數、眾數
- ML - 標準差
- ML - 百分位數
- ML - 資料分佈
- ML - 偏度和峰度
- ML - 偏差和方差
- ML - 假設
- ML中的迴歸分析
- ML - 迴歸分析
- ML - 線性迴歸
- ML - 簡單線性迴歸
- ML - 多元線性迴歸
- ML - 多項式迴歸
- ML中的分類演算法
- ML - 分類演算法
- ML - 邏輯迴歸
- ML - K近鄰演算法 (KNN)
- ML - 樸素貝葉斯演算法
- ML - 決策樹演算法
- ML - 支援向量機
- ML - 隨機森林
- ML - 混淆矩陣
- ML - 隨機梯度下降
- ML中的聚類演算法
- ML - 聚類演算法
- ML - 基於中心點的聚類
- ML - K均值聚類
- ML - K中心點聚類
- ML - 均值漂移聚類
- ML - 層次聚類
- ML - 基於密度的聚類
- ML - DBSCAN聚類
- ML - OPTICS聚類
- ML - HDBSCAN聚類
- ML - BIRCH聚類
- ML - 親和傳播
- ML - 基於分佈的聚類
- ML - 凝聚層次聚類
- ML中的降維
- ML - 降維
- ML - 特徵選擇
- ML - 特徵提取
- ML - 向後剔除法
- ML - 向前特徵構造
- ML - 高相關性篩選
- ML - 低方差篩選
- ML - 缺失值比例
- ML - 主成分分析
- 強化學習
- ML - 強化學習演算法
- ML - 利用與探索
- ML - Q學習
- ML - REINFORCE演算法
- ML - SARSA強化學習
- ML - 演員-評論家方法
- 深度強化學習
- ML - 深度強化學習
- 量子機器學習
- ML - 量子機器學習
- ML - 使用Python的量子機器學習
- 機器學習雜項
- ML - 效能指標
- ML - 自動化工作流程
- ML - 提升模型效能
- ML - 梯度提升
- ML - 自舉匯聚 (Bagging)
- ML - 交叉驗證
- ML - AUC-ROC曲線
- ML - 網格搜尋
- ML - 資料縮放
- ML - 訓練和測試
- ML - 關聯規則
- ML - Apriori演算法
- ML - 高斯判別分析
- ML - 成本函式
- ML - 貝葉斯定理
- ML - 精度和召回率
- ML - 對抗性
- ML - 堆疊
- ML - 輪次
- ML - 感知器
- ML - 正則化
- ML - 過擬合
- ML - P值
- ML - 熵
- ML - MLOps
- ML - 資料洩露
- ML - 機器學習的貨幣化
- ML - 資料型別
- 機器學習 - 資源
- ML - 快速指南
- ML - 速查表
- ML - 面試問題
- ML - 有用資源
- ML - 討論
機器學習 - 百分位數
百分位數是機器學習中用於描述資料集分佈的統計概念。百分位數是一種度量,表示一組觀測值中低於給定百分比的觀測值的數值。
例如,第25個百分位數(也稱為第一四分位數)是資料集觀測值中低於25%的數值,而第75個百分位數(也稱為第三四分位數)是資料集觀測值中低於75%的數值。
百分位數可以用來總結資料集的分佈並識別異常值。在機器學習中,百分位數經常用於資料預處理和探索性資料分析以獲得對資料的洞察。
Python 提供了幾個用於計算百分位數的庫,包括 NumPy 和 Pandas。
使用 NumPy 計算百分位數
下面是一個使用 NumPy 計算百分位數的示例:
示例
import numpy as np data = np.array([1, 2, 3, 4, 5]) p25 = np.percentile(data, 25) p75 = np.percentile(data, 75) print('25th percentile:', p25) print('75th percentile:', p75)
在這個示例中,我們使用 NumPy 建立一個樣本資料集,然後使用np.percentile()函式計算第25個和第75個百分位數。
輸出
輸出顯示資料集的百分位數的值。
25th percentile: 2.0 75th percentile: 4.0
使用 Pandas 計算百分位數
下面是一個使用 Pandas 計算百分位數的示例:
示例
import pandas as pd data = pd.Series([1, 2, 3, 4, 5]) p25 = data.quantile(0.25) p75 = data.quantile(0.75) print('25th percentile:', p25) print('75th percentile:', p75)
在這個示例中,我們建立一個 Pandas Series 物件,然後使用 Series 物件的quantile()方法計算第25個和第75個百分位數。
輸出
輸出顯示資料集的百分位數的值。
25th percentile: 2.0 75th percentile: 4.0
廣告