- 凸最佳化教程
- 首頁
- 簡介
- 線性規劃
- 範數
- 內積
- 極小值和極大值
- 凸集
- 仿射集
- 凸包
- Caratheodory 定理
- 魏爾斯特拉斯定理
- 最近點定理
- 基本分離定理
- 凸錐
- 極錐
- 錐組合
- 多面體集
- 凸集的極點
- 方向
- 凸函式與凹函式
- 詹森不等式
- 可微凸函式
- 全域性最優的充分和必要條件
- 擬凸函式與擬凹函式
- 可微擬凸函式
- 嚴格擬凸函式
- 強擬凸函式
- 偽凸函式
- 凸規劃問題
- Fritz-John 條件
- Karush-Kuhn-Tucker 最優性必要條件
- 凸問題的演算法
- 凸最佳化資源
- 凸最佳化 - 快速指南
- 凸最佳化 - 資源
- 凸最佳化 - 討論
凸最佳化 - 詹森不等式
設 S 是 $\mathbb{R}^n$ 中一個非空凸集,且 $f:S \rightarrow \mathbb{R}^n$。則 f 為凸函式當且僅當對於每個整數 $k>0$
$x_1,x_2,...x_k \in S, \displaystyle\sum\limits_{i=1}^k \lambda_i=1, \lambda_i\geq 0, \forall i=1,2,s,k$,有 $f\left ( \displaystyle\sum\limits_{i=1}^k \lambda_ix_i \right )\leq \displaystyle\sum\limits_{i=1}^k \lambda _if\left ( x \right )$
證明
用數學歸納法證明。
$k=1:x_1 \in S$ 因此 $f\left ( \lambda_1 x_1\right ) \leq \lambda_i f\left (x_1\right )$,因為 $\lambda_i=1$。
$k=2:\lambda_1+\lambda_2=1$ 且 $x_1, x_2 \in S$
因此,$\lambda_1x_1+\lambda_2x_2 \in S$
因此根據定義,$f\left ( \lambda_1 x_1 +\lambda_2 x_2 \right )\leq \lambda _1f\left ( x_1 \right )+\lambda _2f\left ( x_2 \right )$
假設對於 $n < k$ 成立。
因此,
$f\left ( \lambda_1 x_1+ \lambda_2 x_2+....+\lambda_k x_k\right )\leq \lambda_1 f\left (x_1 \right )+\lambda_2 f\left (x_2 \right )+...+\lambda_k f\left (x_k \right )$
$k=n+1:$ 設 $x_1, x_2,....x_n,x_{n+1} \in S$ 且 $\displaystyle\sum\limits_{i=1}^{n+1}=1$
因此 $\mu_1x_1+\mu_2x_2+.......+\mu_nx_n+\mu_{n+1} x_{n+1} \in S$
因此,$f\left (\mu_1x_1+\mu_2x_2+...+\mu_nx_n+\mu_{n+1} x_{n+1} \right )$
$=f\left ( \left ( \mu_1+\mu_2+...+\mu_n \right)\frac{\mu_1x_1+\mu_2x_2+...+\mu_nx_n}{\mu_1+\mu_2+\mu_3}+\mu_{n+1}x_{n+1} \right)$
$=f\left ( \mu_y+\mu_{n+1}x_{n+1} \right )$ 其中 $\mu=\mu_1+\mu_2+...+\mu_n$ 且
$y=\frac{\mu_1x_1+\mu_2x_2+...+\mu_nx_n}{\mu_1+\mu_2+...+\mu_n}$ 且 $\mu_1+\mu_{n+1}=1,y \in S$
$\Rightarrow f\left ( \mu_1x_1+\mu_2x_2+...+\mu_nx_n+\mu_{n+1}x_{n+1}\right ) \leq \mu f\left ( y \right )+\mu_{n+1} f\left ( x_{n+1} \right )$
$\Rightarrow f\left ( \mu_1x_1+\mu_2x_2+...+\mu_nx_n+\mu_{n+1}x_{n+1}\right ) \leq$
$\left ( \mu_1+\mu_2+...+\mu_n \right )f\left ( \frac{\mu_1x_1+\mu_2x_2+...+\mu_nx_n}{\mu_1+\mu_2+...+\mu_n} \right )+\mu_{n+1}f\left ( x_{n+1} \right )$
$\Rightarrow f\left ( \mu_1x_1+\mu_2x_2+...+\mu_nx_n +\mu_{n+1}x_{n+1}\right )\leq \left ( \mu_1+ \mu_2+ ...+\mu_n \right )$
$\left [ \frac{\mu_1}{\mu_1+ \mu_2+ ...+\mu_n}f\left ( x_1 \right )+...+\frac{\mu_n}{\mu_1+ \mu_2+ ...+\mu_n}f\left ( x_n \right ) \right ]+\mu_{n+1}f\left ( x_{n+1} \right )$
$\Rightarrow f\left ( \mu_1x_1+\mu_2x_2+...+\mu_nx_n+\mu_{n+1}x_{n+1}\right )\leq \mu_1f\left ( x_1 \right )+\mu_2f\left ( x_2 \right )+....$
證畢。