連續時間系統的並聯實現
連續時間系統的實現
連續時間LTI系統的實現是指獲得與系統微分方程或傳遞函式對應的網路。
系統的傳遞函式可以使用積分器或微分器來實現。由於某些缺點,微分器不用於實現實際系統。因此,僅使用積分器來實現連續時間系統。加法器和乘法器是實現連續時間系統的另外兩個元件。
連續時間系統的並聯實現
在連續時間系統的並聯實現中,系統的傳遞函式被表示為其部分分式,然後使用積分器和加法器實現每個因子。最後,所有已實現的結構並行連線,即輸入訊號被應用於每個結構,並且所有輸出訊號被加在一起。
以下示例說明了並聯形式的連續時間系統的實現。
數值示例
用並聯形式實現由以下傳遞函式描述的連續時間系統。
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )}}}$$
解答
系統給定的傳遞函式為
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{Y\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )}}}$$
H(s) 的部分分式為:
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )}\mathrm{\,=\,}\frac{A}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )}\mathrm{\,+\,}\frac{B}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )}\mathrm{\,+\,}\frac{C}{\left ( s\mathrm{\,+\,}\mathrm{4} \right )}}}$$
現在,係數A、B和C確定如下:
$$\mathrm{\mathit{A\mathrm{\,=\,}\left [ \left ( s\mathrm{\,+\,}\mathrm{2} \right )H\left ( s \right ) \right ]_{s\mathrm{\,=\,}-\mathrm{2}}\mathrm{\,=\,}\left [ \frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )} \right ]_{s\mathrm{\,=\,}-\mathrm{2}}}}$$
$$\mathrm{\mathit{\therefore A\mathrm{\,=\,}\frac{\left ( -\mathrm{2} \right )\left ( -\mathrm{2\mathrm{\,+\,}1} \right )}{\mathrm{\left ( -2\mathrm{\,+\,}3 \right )\left ( -2\mathrm{\,+\,}4 \right )}}\mathrm{\,=\,}\mathrm{\frac{2}{2}\mathrm{\,=\,}1}}}$$
$$\mathrm{\mathit{B\mathrm{\,=\,}\left [ \left ( s\mathrm{\,+\,}\mathrm{3} \right )H\left ( s \right ) \right ]_{s\mathrm{\,=\,}-\mathrm{3}}\mathrm{\,=\,}\left [ \frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{4} \right )} \right ]_{s\mathrm{\,=\,}-\mathrm{3}}}}$$
$$\mathrm{\mathit{\therefore B\mathrm{\,=\,}\frac{\left ( -\mathrm{3} \right )\left ( -\mathrm{3\mathrm{\,+\,}1} \right )}{\mathrm{\left ( -3\mathrm{\,+\,}2 \right )\left ( -3\mathrm{\,+\,}4 \right )}}\mathrm{\,=\,}\mathrm{-6}}}$$
$$\mathrm{\mathit{C\mathrm{\,=\,}\left [ \left ( s\mathrm{\,+\,}\mathrm{4} \right )H\left ( s \right ) \right ]_{s\mathrm{\,=\,}-\mathrm{4}}\mathrm{\,=\,}\left [ \frac{s\left ( s\mathrm{\,+\,}\mathrm{1} \right )}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )\left ( s\mathrm{\,+\,}\mathrm{3} \right )} \right ]_{s\mathrm{\,=\,}-\mathrm{4}}}}$$
$$\mathrm{\mathit{\therefore C\mathrm{\,=\,}\frac{\left ( -\mathrm{4} \right )\left ( -\mathrm{4\mathrm{\,+\,}1} \right )}{\mathrm{\left ( -4\mathrm{\,+\,}2 \right )\left ( -4\mathrm{\,+\,}3 \right )}}\mathrm{\,=\,}\mathrm{6}}}$$
因此,傳遞函式為:
$$\mathrm{\mathit{H\left ( s \right )\mathrm{\,=\,}\frac{\mathrm{1}}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )}-\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )}\mathrm{\,+\,}\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{4} \right )} }}$$
令:
$$\mathrm{\mathit{H_{\mathrm{1}}\left ( s \right )\mathrm{\,=\,}\frac{\mathrm{1}}{\left ( s\mathrm{\,+\,}\mathrm{2} \right )}\mathrm{\,=\,}\frac{s^{-\mathrm{1}}}{\mathrm{1\mathrm{\,+\,}2}s^{\mathrm{-1}}}}} $$
$$\mathrm{\mathit{H_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}-\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{3} \right )}\mathrm{\,=\,}\frac{-\mathrm{6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}3}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{H_{\mathrm{3}}\left ( s \right )\mathrm{\,=\,}\frac{\mathrm{6}}{\left ( s\mathrm{\,+\,}\mathrm{4} \right )}\mathrm{\,=\,}\frac{\mathrm{6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}4}s^{-\mathrm{1}}}}}$$
這些傳遞函式可以實現如下:
步驟1
實現$\mathrm{\mathit{H_{\mathrm{1}}\left ( s \right )}}$ −
$$\mathrm{\mathit{H_{\mathrm{1}}\left ( s \right )\mathrm{\,=\,}\frac{Y_{\mathrm{1}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{Y_{\mathrm{1}}\left ( s \right )}{A_{\mathrm{1}}\left ( s \right )}\frac{A_{\mathrm{1}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{s^{-\mathrm{1}}}{\mathrm{1\mathrm{\,+\,}2}s^{\mathrm{-1}}}}}$$
$$\mathrm{\mathit{\Rightarrow \frac{Y_{\mathrm{1}}\left ( s \right )}{A_{\mathrm{1}}\left ( s \right )}\mathrm{\,=\,}s^{-\mathrm{1}}}}$$
$$\mathrm{\mathit{\therefore Y_{\mathrm{1}}\left ( s \right )\mathrm{\,=\,}s^{-\mathrm{1}}A_{\mathrm{1}}\left ( s \right )}}$$
並且:
$$\mathrm{\mathit{\frac{A_{\mathrm{1}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{1}}{\mathrm{1\mathrm{\,+\,}2}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{\therefore A_{\mathrm{1}}\left ( s \right )\mathrm{\,=\,}X\left ( s \right )-\mathrm{2}s^{-\mathrm{1}}A_{\mathrm{1}}\left ( s \right )}}$$
步驟2
實現$\mathrm{\mathit{H_{\mathrm{2}}\left ( s \right )}}$ −
$$\mathrm{\mathit{H_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}\frac{Y_{\mathrm{2}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{Y_{\mathrm{2}}\left ( s \right )}{A_{\mathrm{2}}\left ( s \right )}\frac{A_{\mathrm{2}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{-6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}3}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{\Rightarrow \frac{Y_{\mathrm{2}}\left ( s \right )}{A_{\mathrm{2}}\left ( s \right )}\mathrm{\,=\,}\mathrm{-6}s^{-\mathrm{1}}}}$$
$$\mathrm{\mathit{\therefore Y_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}\mathrm{-6}s^{-\mathrm{1}}A_{\mathrm{2}}\left ( s \right )}}$$
$$\mathrm{\mathit{\frac{A_{\mathrm{2}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{1}}{\mathrm{1\mathrm{\,+\,}3}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{A_{\mathrm{2}}\left ( s \right )\mathrm{\,=\,}X\left ( s \right )-\mathrm{3}s^{-\mathrm{1}}A_{\mathrm{2}}\left ( s \right )}}$$
步驟3
實現$\mathrm{\mathit{H_{\mathrm{3}}\left ( s \right )}}$ −
$$\mathrm{\mathit{H_{\mathrm{3}}\left ( s \right )\mathrm{\,=\,}\frac{Y_{\mathrm{3}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{Y_{\mathrm{3}}\left ( s \right )}{A_{\mathrm{3}}\left ( s \right )}\frac{A_{\mathrm{3}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{6}s^{\mathrm{-1}}}{\mathrm{1\mathrm{\,+\,}4}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{\Rightarrow \frac{Y_{\mathrm{3}}\left ( s \right )}{A_{\mathrm{3}}\left ( s \right )}\mathrm{\,=\,}\mathrm{6}s^{-\mathrm{1}}}}$$
$$\mathrm{\mathit{\therefore Y_{\mathrm{3}}\left ( s \right )\mathrm{\,=\,}\mathrm{6}s^{-\mathrm{1}}A_{\mathrm{3}}\left ( s \right )}}$$
並且:
$$\mathrm{\mathit{\frac{A_{\mathrm{3}}\left ( s \right )}{X\left ( s \right )}\mathrm{\,=\,}\frac{\mathrm{1}}{\mathrm{1\mathrm{\,+\,}4}s^{-\mathrm{1}}}}}$$
$$\mathrm{\mathit{A_{\mathrm{3}}\left ( s \right )\mathrm{\,=\,}X\left ( s \right )-\mathrm{4}s^{-\mathrm{1}}A_{\mathrm{3}}\left ( s \right )}}$$
步驟4
現在,透過組合上述三個結構,得到H(s)的並聯實現: