使用Z變換分析LTI系統


Z變換

Z變換是一種數學工具,用於將離散時間域中的差分方程轉換為z域中的代數方程。在數學上,如果$\mathit{x}\mathrm{\left(\mathit{n}\right)}$是一個離散時間函式,那麼它的Z變換定義為:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$

離散時間系統的變換分析

Z變換在離散時間LTI(線性時不變)系統的設計和分析中起著至關重要的作用。

離散時間LTI系統的傳遞函式

該圖顯示了一個離散時間LTI系統,其衝激響應為$\mathit{h}\mathrm{\left(\mathit{n}\right)}$。

假設系統對輸入$\mathit{x}\mathrm{\left(\mathit{n}\right)}$產生輸出$\mathit{y}\mathrm{\left(\mathit{n}\right)}$。那麼:

$$\mathrm{\mathit{y}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{h}\mathrm{\left(\mathit{n}\right)}*\mathit{x}\mathrm{\left(\mathit{n}\right)}}$$

對等式兩邊進行Z變換,得到:

$$\mathrm{\mathit{Z}\mathrm{\left[ \mathit{y}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{\mathrm{=}}\mathit{Z}\mathrm{\left[\mathit{h}\mathrm{\left(\mathit{n}\right)}*\mathit{x}\mathrm{\left(\mathit{n}\right)} \right ]}}$$

$$\mathrm{\therefore \mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathit{H}\mathrm{\left(\mathit{z}\right)}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$

因此,系統衝激響應$\mathit{h}\mathrm{\left(\mathit{n}\right)}$的Z變換由下式給出:

$$\mathrm{\mathit{H}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{Y}\mathrm{\left(\mathit{z}\right)}}{\mathit{X}\mathrm{\left(\mathit{z}\right)}}}$$

其中,H(z)稱為離散時間LTI系統的**傳遞函式**,可以定義如下:

離散時間LTI系統的**傳遞函式**定義為輸出序列的Z變換與輸入序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}$的Z變換之比,忽略初始條件。

離散時間LTI系統的傳遞函式與差分方程之間的關係

一個nth階離散時間LTI系統可以用以下差分方程來描述:

$$\mathrm{\sum_{\mathit{k=\mathrm{0}}}^{\mathit{N}}\mathit{a_{\mathit{k}}}\mathit{y}\mathrm{\left(\mathit{n-k}\right)}\:\mathrm{=}\:\sum_{\mathit{k=\mathrm{0}}}^{\mathit{M}}\mathit{b_{\mathit{k}}}\mathit{x}\mathrm{\left(\mathit{n-k}\right)}}$$

展開上述差分方程,得到:

$$\mathrm{\mathit{a_{\mathrm{0}}}\mathit{y}\mathrm{\left(\mathit{n}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{1}}}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{2}}}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{2}}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{3}}}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{3}}\right)}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{a_{\mathit{N}}}\mathit{y}\mathrm{\left(\mathit{n-\mathit{N}}\right)}\:\mathrm{=}\:\mathit{b_{\mathrm{0}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{1}}}\mathit{x}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{2}}}\mathit{x}\mathrm{\left(\mathit{n-\mathrm{2}}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{3}}}\mathit{x}\mathrm{\left(\mathit{n-\mathrm{3}}\right)}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{b_{\mathit{M}}}\mathit{x}\mathrm{\left(\mathit{n-\mathit{M}}\right)}}$$

對等式兩邊進行Z變換,並忽略初始條件,得到:

$$\mathrm{\mathit{Z}\mathrm{\left [ \mathit{a_{\mathrm{0}}}\mathit{y}\mathrm{\left(\mathit{n}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{1}}}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{2}}}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{2}}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{3}}}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{3}}\right)}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{a_{\mathit{N}}}\mathit{y}\mathrm{\left(\mathit{n-\mathit{N}}\right)} \right ]}\:\mathrm{=}\:\mathit{Z}\mathrm{\left[\mathit{b_{\mathrm{0}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{1}}}\mathit{x}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{2}}}\mathit{x}\mathrm{\left(\mathit{n-\mathrm{2}}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{3}}}\mathit{x}\mathrm{\left(\mathit{n-\mathrm{3}}\right)}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{b_{\mathit{M}}}\mathit{x}\mathrm{\left(\mathit{n-\mathit{M}}\right)}\right]}}$$

$$\mathrm{\Rightarrow \mathit{a_{\mathrm{0}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{1}}}\mathit{z^{-\mathrm{1}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{2}}}\mathit{z^{-\mathrm{2}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:\mathit{a_{\mathrm{2}}}\mathit{z^{-\mathrm{3}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:...\mathrm{+}\mathit{a_{\mathit{N}}}\mathit{z^{-\mathit{N}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathit{b_{\mathrm{0}}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{1}}}\mathit{z^{-\mathrm{1}}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{2}}}\mathit{z^{-\mathrm{2}}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:\mathit{b_{\mathrm{3}}}\mathit{z^{-\mathrm{3}}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:...\mathrm{+}\mathit{b_{\mathit{M}}}\mathit{z^{-\mathit{M}}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$

$$\mathrm{\Rightarrow \mathrm{\left[ \mathit{a_{\mathrm{0}}}\:\mathrm{+}\:\mathit{a_{\mathrm{1}}}\mathit{z^{-\mathrm{1}}}\:\mathrm{+}\:\mathit{a_{\mathrm{2}}}\mathit{z^{-\mathrm{2}}}\:\mathrm{+}\:\mathit{a_{\mathrm{3}}}\mathit{z^{-\mathrm{3}}}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{a_{\mathit{N}}}\mathit{z^{-\mathit{N}}}\right]}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathrm{\left [ \mathit{b_{\mathrm{0}}}\:\mathrm{+}\:\mathit{b_{\mathrm{1}}}\mathit{z^{-\mathrm{1}}}\:\mathrm{+}\:\mathit{b_{\mathrm{2}}}\mathit{z^{-\mathrm{2}}}\:\mathrm{+}\:\mathit{b_{\mathrm{3}}}\mathit{z^{-\mathrm{3}}}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{b_{\mathit{M}}}\mathit{z^{-\mathit{M}}} \right ]}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$

$$\mathrm{\Rightarrow\frac{\mathit{Y}\mathrm{\left(\mathit{z}\right)}}{\mathit{X}\mathrm{\left(\mathit{z}\right)}}\:\mathrm{=}\:\frac{\mathit{b_{\mathrm{0}}}\:\mathrm{+}\:\mathit{b_{\mathrm{1}}}\mathit{z^{-\mathrm{1}}}\:\mathrm{+}\:\mathit{b_{\mathrm{2}}}\mathit{z^{-\mathrm{2}}}\:\mathrm{+}\:\mathit{b_{\mathrm{3}}}\mathit{z^{-\mathrm{3}}}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{b_{\mathit{M}}}\mathit{z^{-\mathit{M}}}}{\mathit{a_{\mathrm{0}}}\:\mathrm{+}\:\mathit{a_{\mathrm{1}}}\mathit{z^{-\mathrm{1}}}\:\mathrm{+}\:\mathit{a_{\mathrm{2}}}\mathit{z^{-\mathrm{2}}}\:\mathrm{+}\:\mathit{a_{\mathrm{3}}}\mathit{z^{-\mathrm{3}}}\:\mathrm{+}\:...\:\mathrm{+}\:\mathit{a_{\mathit{N}}}\mathit{z^{-\mathit{N}}}}}$$

$$\mathrm{\therefore \frac{\mathit{Y}\mathrm{\left(\mathit{z}\right)}}{\mathit{X}\mathrm{\left(\mathit{z}\right)}}\:\mathrm{=}\:\mathit{H}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\sum_{\mathit{k=\mathrm{0}}}^{\mathit{M}}\mathit{b}_{\mathit{k}}\mathit{z}^{-\mathit{k}}}{\sum_{\mathit{k=\mathrm{0}}}^{\mathit{N}}\mathit{a}_{\mathit{k}}\mathit{z}^{-\mathit{k}}}}$$

其中,$\mathit{H}\mathrm{\left(\mathit{z}\right)}$是離散時間系統的傳遞函式,上述方程給出了系統傳遞函式與差分方程之間的關係。

更新於: 2022年1月24日

4K+ 次瀏覽

開啟你的職業生涯

透過完成課程獲得認證

立即開始
廣告

© . All rights reserved.