利用Z變換求解差分方程
Z變換
Z變換是一種數學工具,用於將離散時間域中的差分方程轉換為z域中的代數方程。數學上,如果$\mathrm{\mathit{x\left ( n \right )}}$是一個離散時間函式,則其Z變換定義為:
$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$
利用Z變換求解差分方程
為了求解差分方程,首先透過Z變換將其轉換為代數方程。然後,在z域中計算方程的解,最後透過反Z變換得到方程的時域解。
注意 − 系統的各種響應:
強迫響應 - 當忽略初始條件時,系統僅由輸入引起的響應稱為系統的強迫響應。
自然響應 - 忽略輸入時,系統僅由初始條件引起的響應稱為系統的自然響應。
總響應 - 系統同時考慮初始條件和輸入引起的響應稱為系統的總響應。
脈衝響應 - 當系統輸入為單位脈衝訊號時,系統的響應稱為系統的脈衝響應。
階躍響應 - 當系統輸入為單位階躍訊號時,系統的響應稱為系統的階躍響應。
數值示例
一個離散時間線性時不變 (LTI) 系統由以下差分方程描述:
$$\mathrm{\mathit{y}\mathrm{\left(\mathit{n}\right)}-\frac{3}{4}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:+\:\frac{1}{8}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{2}}\right)}\:\mathrm{=}\:\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{+}\:\mathit{x}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}}$$
已知$\mathit{y}\mathrm{\left(\mathrm{-1}\right)}\:\mathrm{=}\:0$ 和 $\mathit{x}\mathrm{\left(\mathrm{-2}\right)}\:\mathrm{=}\:-1$,求:
系統的自然響應
系統的強迫響應
解 (i) - 系統的自然響應:
由於系統的自然響應僅由初始條件決定。對於自然響應,$\mathit{x}\mathrm{\left(\mathit{n}\right)}$ = 0。因此,給定系統的差分方程變為:
$$\mathrm{\mathit{y}\mathrm{\left(\mathit{n}\right)}-\frac{3}{4}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:+\:\frac{1}{8}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{2}}\right)}\:\mathrm{=}\:0}$$
現在,對上述方程進行Z變換,得到:
$$\mathrm{\mathit{Z}\mathrm{\left [ \mathit{y}\mathrm{\left(\mathit{n}\right)}-\frac{3}{4}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:+\:\frac{1}{8}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{2}}\right)} \right ]}\mathrm{=}\:0}$$
$$\mathrm{\Rightarrow\mathit{Y}\mathrm{\left(\mathit{z}\right)}-\frac{3}{4}\mathrm{\left [ \mathit{z^{-\mathrm{1}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}+\mathit{y}\mathrm{\left(\mathrm{-1}\right)} \right ]}\:+\:\frac{1}{8}\mathrm{\left [ \mathit{z^{-\mathrm{2}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}+\mathit{z^{-\mathrm{1}}}\mathit{y}\mathrm{\left(\mathrm{-1}\right)} +\mathit{y}\mathrm{\left(\mathrm{-2}\right)}\right ]}\mathrm{=}\:0}$$
$$\mathrm{\because \mathit{y}\mathrm{\left(\mathrm{-1}\right)} \:=\:0\:and\:\mathit{y}\mathrm{\left(\mathrm{-2}\right)} \:=\:-1}$$
$$\mathrm{\therefore \mathit{-Y}\mathrm{\left(\mathit{z}\right)}\mathrm{\left ( 1-\frac{3}{4}\mathit{z^{-\mathrm{1}}}+\frac{1}{8}\mathit{z^{\mathrm{-2}}} \right )}-\frac{1}{8}\:=\:0}$$
$$\mathrm{\therefore \mathit{Y}\mathrm{\left(\mathit{z}\right)}\:=\:\frac{\frac{1}{8}}{\mathrm{\left ( 1-\frac{3}{4}\mathit{z^{-\mathrm{1}}}+\frac{1}{8}\mathit{z^{\mathrm{-2}}} \right )}}\:=\:\frac{\mathrm{\left ( \frac{1}{8} \right )}\mathit{z^{\mathrm{2}}}}{\mathrm{\left ( \mathit{z^{\mathrm{2}}}-\frac{3}{4}\mathit{z} +\frac{1}{8}\right )}}}$$
$$\mathrm{\Rightarrow \mathit{Y}\mathrm{\left(\mathit{z}\right)}\:=\:\frac{\mathrm{\left ( \frac{1}{8} \right )}\mathit{z^{\mathrm{2}}}}{\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}}$$
進行部分分式分解,得到:
$$\mathrm{\frac{\mathit{Y}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{\mathrm{\left ( \frac{1}{8} \right )}\mathit{z}}{\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}\:\mathrm{=}\:\frac{\mathit{A}}{\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}}\:+\:\frac{\mathit{B}}{\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}}$$
$$\mathrm{\Rightarrow \frac{\mathit{Y}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:\mathrm{=}\:\frac{\frac{1}{4}}{\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}}\:-\:\frac{\frac{1}{8}}{\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}}$$
$$\mathrm{\therefore \mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{z}}{4\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}}\:-\:\frac{\mathit{z}}{8\mathrm{\left ( \mathit{z}-\frac{1}{4}\right)}}}$$
現在,為了獲得系統的自然響應,我們對等式兩邊進行反Z變換,即:
$$\mathrm{\mathit{Z}^{-1}\mathrm{\left [ \mathit{Y}\mathrm{\left(\mathit{z}\right)} \right ]}\:=\:\mathit{Z}^{-1}\mathrm{\left [ \frac{\mathit{z}}{4\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}} \right ]}\:-\:\mathit{Z}^{-1}\mathrm{\left [ \frac{\mathit{z}}{8\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}} \right ]}}$$
$$\mathrm{\therefore \mathit{y}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\frac{1}{4}\mathrm{\left ( \frac{1}{2} \right )}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}-\frac{1}{8}\mathrm{\left ( \frac{1}{4} \right )}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$
這就是給定系統的自然響應(即由於初始條件引起的響應)。
解 (ii) - 系統的強迫響應:
考慮將單位階躍序列應用於系統。然後,系統的強迫響應為階躍響應。對於階躍響應,$\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{u}\mathrm{\left(\mathit{n}\right)}$。
因此,系統的差分方程變為:
$$\mathrm{\mathit{y}\mathrm{\left(\mathit{n}\right)}-\frac{3}{4}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:+\:\frac{1}{8}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{2}}\right)}\:\mathrm{=}\:\mathit{u}\mathrm{\left(\mathit{n}\right)}\:+\:\mathit{u}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}}$$
由於系統的強迫響應僅由輸入決定,即忽略初始條件。
對等式兩邊進行Z變換,得到:
$$\mathrm{\mathit{Z}\mathrm{\left [ \mathit{y}\mathrm{\left(\mathit{n}\right)}-\frac{3}{4}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{1}}\right)}\:+\:\frac{1}{8}\mathit{y}\mathrm{\left(\mathit{n-\mathrm{2}}\right)} \right ]}\:=\:\mathit{Z}\mathrm{\left [ \mathit{u}\mathrm{\left(\mathit{n}\right)}\:+\:\mathit{u}\mathrm{\left(\mathit{n-\mathrm{1}}\right)} \right ]}}$$
$$\mathrm{\Rightarrow \mathit{Y}\mathrm{\left(\mathit{z}\right)}-\frac{3}{4}\mathit{z^{-\mathrm{1}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:\mathrm{+}\:\frac{1}{8}\mathit{z^{-\mathrm{2}}}\mathit{Y}\mathrm{\left(\mathit{z}\right)}\:=\:\frac{\mathit{z}}{\mathit{z}-1}\:+\:\frac{1}{\mathit{z}-\mathrm{1}}}$$
$$\mathrm{\Rightarrow \mathit{Y}\mathrm{\left(\mathit{z}\right)}\mathrm{\left ( 1-\frac{3}{4}\mathit{z^{-\mathrm{1}}}\mathrm{\, +\, }\frac{1}{8} \mathit{z^{-\mathrm{2}}}\right )}\:=\:\frac{\mathit{z}+1}{\mathit{z}-1}}$$
$$\mathrm{\therefore \mathit{Y}\mathrm{\left(\mathit{z}\right)}\:=\:\frac{\mathit{z}+1}{\mathrm{\left ( \mathit{z}-1 \right )}\mathrm{\left ( 1-\frac{3}{4}\mathit{z^{-\mathrm{1}}}+\frac{1}{8}\mathit{z^{-\mathrm{2}}} \right )}}\:=\:\frac{\mathit{z^{\mathrm{2}}\mathrm{\left ( \mathit{z} +1\right )}}}{\mathrm{\left ( \mathit{z}-1 \right )}\mathrm{\left ( \mathit{z^{\mathrm{2}}}-\frac{3}{4} \mathit{z}+\frac{1}{8}\right )}}}$$
$$\mathrm{\Rightarrow \mathit{Y}\mathrm{\left(\mathit{z}\right)}\:=\:\frac{\mathit{z^{\mathrm{2}}\mathrm{\left ( \mathit{z}+1 \right )}}}{\mathrm{\left ( \mathit{z}-1 \right )}\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}}$$
現在,進行部分分式分解,得到:
$$\mathrm{\frac{\mathit{Y}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:=\:\frac{\mathit{z\mathrm{\left ( \mathit{z}+1 \right )}}}{\mathrm{\left ( \mathit{z}-1 \right )}\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}\:=\:\frac{\mathit{A}}{\mathrm{\left ( \mathit{z}-1 \right )}}\:+\:\frac{\mathit{B}}{\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}}\:+\:\frac{\mathit{C}}{\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}}$$
$$\mathrm{\Rightarrow \frac{\mathit{Y}\mathrm{\left(\mathit{z}\right)}}{\mathit{z}}\:=\:\frac{\mathrm{\left ( \frac{16}{3} \right )}}{\mathrm{\left ( \mathit{z}-1 \right )}}-\frac{6}{\mathrm{\left ( \mathit{z}-\frac{1}{2} \right )}}\:+\:\frac{\mathrm{\left ( \frac{5}{3} \right )}}{\mathrm{\left ( \mathit{z}-\frac{1}{4} \right )}}}$$
$$\mathrm{\therefore \mathit{Y}\mathrm{\left(\mathit{z}\right)}\:=\:\frac{16}{3}\mathrm{\left ( \frac{\mathit{z}}{\mathit{z}-1} \right )}-6\mathrm{\left ( \frac{\mathit{z}}{\mathit{z}-\frac{1}{2}} \right )}\:+\:\frac{5}{3}\mathrm{\left ( \frac{\mathit{z}}{\mathit{z}-\frac{1}{4}} \right )}}$$
現在,對上述方程等式兩邊進行反Z變換,得到:
$$\mathrm{\mathit{Z}^{-1}\mathrm{\left [ \mathit{Y}\mathrm{\left(\mathit{z}\right)} \right ]}\:=\:\frac{16}{3}\mathit{Z}^{-1}\mathrm{\left [ \frac{\mathit{z}}{\mathit{z}-1} \right ]}-6\mathit{Z}^{-1}\mathrm{\left [ \frac{\mathit{z}}{\mathit{z}-\frac{1}{2}} \right ]}\:+\:\frac{5}{3}\mathit{Z}^{-1}\mathrm{\left [ \frac{\mathit{z}}{\mathit{z}-\frac{1}{4}} \right ]}}$$
$$\mathrm{\therefore \mathit{y}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\frac{16}{3}\mathit{u}\mathrm{\left(\mathit{n}\right)}-6\mathrm{\left ( \frac{1}{2} \right )}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\:+\:\frac{5}{3}\mathrm{\left ( \frac{1}{4} \right )}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$
這就是給定系統的強迫響應(階躍響應)。
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP