Z 變換的時間反轉特性


Z 變換

Z 變換是一種數學工具,用於將離散時間域中的差分方程轉換為 z 域中的代數方程。數學上,如果 $\mathrm{\mathit{x\left ( n \right )}}$ 是一個離散時間函式,則其 Z 變換定義為:

$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$

Z 變換的時間反轉特性

說明 – Z 變換的時間反轉特性指出,時域中序列的反轉或反射對應於 z 域中的反轉。因此,如果

$$\mathrm{\mathit{x\left ( n \right )\overset{ZT}{\leftrightarrow}X\left ( z \right );\: \:}\mathrm{ROC}\mathrm{\, =\, }\mathit{R}}$$

那麼,

$$\mathrm{\mathit{x\left ( -n \right )\overset{ZT}{\leftrightarrow}X\left ( \frac{\mathrm{1}}{z} \right )\mathrm{\, =\, }X\left ( z^{\mathrm{-1}} \right );\: \:}\mathrm{ROC}\mathrm{\, =\, }\frac{\mathrm{1}}{\mathit{R}}}$$

證明

根據 Z 變換的定義,我們有:

$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\, }X\left ( z \right )\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$

現在,透過反轉時域中的序列,我們得到:

$$\mathrm{\mathit{Z\left [ x\left ( -n \right ) \right ]\mathrm{\, =\, }\sum_{n\mathrm{\, =\, }-\infty }^{\infty }x\left ( -n \right )z^{-n}}}$$

在上述求和中用 $\mathrm{\mathit{-n\mathrm{\, =\, }m}}$ 替換,我們得到:

$$\mathrm{\mathit{Z\left [ x\left ( -n \right ) \right ]\mathrm{\, =\, }\sum_{m\mathrm{\, =\, }\infty }^{-\infty }x\left ( m \right )z^{m}}}$$

$$\mathrm{\mathit{\Rightarrow Z\left [ x\left ( -n \right ) \right ]\mathrm{\, =\, }\sum_{m\mathrm{\, =\, }-\infty }^{-\infty }x\left ( m \right )\left ( z^{\mathrm{-1}} \right )^{m}\mathrm{\, =\, }X\left ( z^{\mathrm{-1}} \right )}}$$

$$\mathrm{\mathit{\therefore Z\left [ x\left ( -n \right ) \right ]\mathrm{\, =\, }X\left ( Z^{\mathrm{-1}} \right )\mathrm{\, =\, }Z\left ( \frac{\mathrm{1}}{z} \right )}}$$

或者也可以表示為:

$$\mathrm{\mathit{x\left ( -n \right )\overset{ZT}{\leftrightarrow}X\left ( \frac{\mathrm{1}}{z} \right )\mathrm{\, =\, }X\left ( z^{\mathrm{-1}} \right );\; \; \mathrm{ROC}\mathrm{\, =\, }\frac{\mathrm{1}}{R} }}$$

數值示例

使用 Z 變換的時間反轉特性,求以下序列的 Z 變換:

$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\, }u\left ( -n \right )}}$$

解答

給定的序列是:

$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\, }u\left ( -n \right )}}$$

由於單位階躍序列的 Z 變換由下式給出:

$$\mathrm{\mathit{Z\left [ u\left ( n \right ) \right ]\mathrm{\, =\, }\frac{z}{z-\mathrm{1}};\; \; \mathrm{ROC}\to \left|z \right|> \mathrm{1}}}$$

現在,使用 Z 變換的時間反轉特性 [$\mathrm{\mathit{\mathrm{i.e}.,\, x\left ( -n \right )\overset{ZT}{\leftrightarrow}X\left ( \frac{\mathrm{1}}{z} \right )}}$],我們得到:

$$\mathrm{\mathit{Z\left [ u\left ( -n \right ) \right ]\mathrm{\, =\, }\left [ \frac{z}{z-\mathrm{1}} \right ]_{z\mathrm{\, =\, }\left ( \mathrm{1}/z \right )}}}$$

$$\mathrm{\mathit{\Rightarrow Z\left [ u\left ( -n \right ) \right ]\mathrm{\, =\, }\frac{\mathrm{1}/z}{\left ( \mathrm{1}/z \right )-\mathrm{1}}\mathrm{\, =\, }\frac{\mathrm{-1}}{z-\mathrm{1}}}}$$

$$\mathrm{\mathit{\therefore u\left ( -n \right )\overset{ZT}{\leftrightarrow}\frac{\mathrm{-1}}{z-\mathrm{1}};\: \: \: \mathrm{ROC}\to \left|z \right|<\mathrm{1}}} $$

更新於: 2022 年 1 月 29 日

4K+ 次檢視

開啟您的 職業生涯

透過完成課程獲得認證

開始學習
廣告

© . All rights reserved.