Z變換的指數序列乘法性質


Z變換

Z變換是一種數學工具,用於將離散時間域中的差分方程轉換為z域中的代數方程。數學上,如果$\mathit{x}\mathrm{\left(\mathit{n}\right)}$是一個離散時間函式,則其Z變換定義為:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$

Z變換的指數序列乘法性質

說明 - Z變換的指數乘法性質指出,時間域中乘以指數序列對應於z域中的縮放。指數乘法性質也稱為Z變換的z域縮放性質。因此,如果

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{z}\right)};\:\mathrm{ROC}\:\mathrm{=}\:\mathit{R}}$$

那麼,根據指數乘法性質,

$$\mathrm{\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{\frac{\mathit{z}}{\mathit{a}}}\right)};\:\mathrm{ROC}\:\mathrm{=}\:\left| \mathit{a}\right|\mathit{R}}$$

其中,*a* 是一個複數。

證明

根據Z變換的定義,我們有:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$

$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$

$$\mathrm{\Rightarrow \mathit{Z}\mathrm{\left[\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\frac{\mathit{z^{\mathit{-n}}}}{\mathit{a^{\mathit{-n}}}}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathrm{\left ( \frac{\mathit{z}}{\mathit{a}} \right )}^{-\mathit{n}}}$$

$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left ( \frac{\mathit{z}}{\mathit{a}} \right )}}$$

也可以表示為:

$$\mathrm{\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{\frac{\mathit{z}}{\mathit{a}}}\right)};\:\mathrm{ROC}\:\mathrm{=}\:\left| \mathit{a}\right|\mathit{R}}$$

重要 -

  • 如果給定的時間域序列乘以一個增長指數序列,即$\mathit{e}^{j\omega n}$,則

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{e}^{\mathit{j\omega n}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]} \:\mathrm{=}\:\mathit{X}\mathrm{\left( \frac{\mathit{z}}{\mathit{e}^{\mathit{j\omega }}} \right )}\:\mathrm{=}\:\mathit{X}\mathrm{\left( \mathit{e}^{-\mathit{j}\omega }\mathit{z}\right )}}$$

  • 如果給定的時間域序列乘以一個衰減指數序列,即$\mathit{e}^{-j\omega n}$,則

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{e}^{\mathit{-j\omega n}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]} \:\mathrm{=}\:\mathit{X}\mathrm{\left( \frac{\mathit{z}}{\mathit{e}^{\mathit{-j\omega }}} \right )}\:\mathrm{=}\:\mathit{X}\mathrm{\left( \mathit{e}^{\mathit{j}\omega }\mathit{z}\right )}}$$

數值例子 (1)

利用Z變換的指數乘法性質,求下列訊號的Z變換

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)} \:\mathrm{=}\:\mathrm{\left( 2\right )}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$

解答

給定的序列是:

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)} \:\mathrm{=}\:\mathrm{\left( 2\right )}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$

由於單位階躍函式的Z變換為:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\frac{\mathit{z}}{\mathit{z}-1};\:\mathrm{ROC}\to\left|\mathit{z} \right|>1}$$

現在,利用z域縮放或指數性質$\mathrm{\left [ i.e,\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{\frac{\mathit{z}}{\mathit{a}}}\right)} \right ]}$的Z變換,我們得到:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathrm{\left ( 2 \right )}^{\mathrm{\mathit{n}}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}_{\mathit{z=\mathrm{\left ( \frac{\mathit{z}}{2} \right )}}}\:\mathrm{=}\:\frac{\mathrm{\left ( \frac{\mathit{z}}{2} \right )}}{\mathrm{\left ( \frac{\mathit{z}}{2} \right )}-1}}$$

$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathrm{\left ( 2 \right )}^{\mathrm{\mathit{n}}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\frac{\mathit{z}}{\mathit{z}-2};\:\mathrm{ROC}\to\left|\mathit{z} \right|>2}$$

數值例子 (2)

利用Z變換的z域縮放性質,求下列訊號的Z變換

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)} \:\mathrm{=}\:\mathrm{\mathrm{\left ( \frac{1}{2} \right )}}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$

解答

給定的序列是:

$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)} \:\mathrm{=}\:\mathrm{\mathrm{\left ( \frac{1}{2} \right )}}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$

由於單位階躍序列的Z變換為:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\frac{\mathit{z}}{\mathit{z}-1};\:\mathrm{ROC}\to\left|\mathit{z} \right|>1}$$

現在,根據指數乘法性質$\mathrm{\left [ i.e,\mathit{a^{\mathit{n}}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{\frac{\mathit{z}}{\mathit{a}}}\right)} \right ]}$,我們有:

$$\mathrm{\mathit{Z}\mathrm{\left[\mathrm{\left ( \frac{1}{2} \right )}^{\mathrm{\mathit{n}}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}_{\mathit{z=\mathrm{\left [ \frac{\mathit{z}}{\frac{1}{2}} \right ]}}=2\mathit{z}}\:\mathrm{=}\:\frac{2\mathit{z}}{\mathrm{2}\mathit{z}-1}}$$

$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathrm{\left ( \frac{1}{2} \right )}^{\mathrm{\mathit{n}}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathrm{\left ( \frac{\mathit{z}}{\mathit{z}-\frac{1}{2}} \right )};\:\mathrm{ROC}\to\left|\mathit{z} \right|>\frac{1}{2}}$$

更新於:2022年1月29日

瀏覽量:1000+

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.