Z變換的Z域微分性質
Z變換
Z變換是一種數學工具,用於將離散時間域中的差分方程轉換為z域中的代數方程。
數學上,如果$\mathit{x}\mathrm{\left(\mathit{n}\right)}$是一個離散時間函式,則其Z變換定義為:
$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-\mathit{n}}}}$$
Z變換的Z域微分性質
**命題** - Z變換的Z域微分性質指出,時域中的n倍乘法對應於z域中的微分。此性質也稱為Z變換的n倍乘法性質。因此,如果
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{z}\right)};\:\:\mathrm{ROC}\:\mathrm{=}\:\mathit{R}}$$
則根據Z域微分性質:
$$\mathrm{\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)};\:\:\mathrm{ROC}\:\mathrm{=}\:\mathit{R}}$$
證明
根據Z變換的定義,我們有:
$$\mathrm{\mathit{Z}\mathrm{\left [\mathit{x}\mathrm{\left(\mathit{n}\right)} \right ]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z}^{-\mathit{n}}}$$
對上述等式兩邊關於z求導,我們得到:
$$\mathrm{\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\frac{\mathit{d}}{\mathit{dz}}\mathrm{\left [ \sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z}^{-\mathit{n}} \right ]}}$$
$$\mathrm{\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\frac{\mathit{d\mathrm{\left ( \mathit{z^{-n}} \right )}}}{\mathit{dz}}}$$
$$\mathrm{\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathrm{\left( -\mathit{n}\right )}\mathit{z}^{-n-\mathrm{1}}\:\mathrm{=}\:\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-n}}\mathrm{\left ( \mathit{-z}^{-\mathrm{1}} \right )}}$$
$$\mathrm{\Rightarrow \frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}\:\mathrm{=}\:\mathrm{\left ( \mathit{-z}^{-\mathrm{1}} \right )}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{z^{-n}}\:\mathrm{=}\:\mathrm{\left ( \mathit{-z}^{-\mathrm{1}} \right )}\mathit{Z}\mathrm{\left[ \mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)} \right ]}}$$
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[ \mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)} \right ]}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$
同樣,它可以表示為:
$$\mathrm{\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$
類似地,如果訊號在時域中乘以$\mathit{n}^{\mathit{k}}$,則
$$\mathrm{\mathit{n}^{\mathit{k}}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathrm{\left ( -1 \right )}^{\mathit{k}}\mathit{z}^{\mathit{k}}\frac{\mathit{d}^{\mathit{k}}}{\mathit{dz}^{\mathit{k}}}\mathit{X}\mathrm{\left(\mathit{z}\right)}}$$
數值例子
求訊號$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{n}^\mathrm{2}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$的Z變換。
解答
給定的訊號是:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{n}^\mathrm{2}\mathit{u}\mathrm{\left(\mathit{n}\right)}}$$
由於單位階躍序列的Z變換由下式給出:
$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\frac{\mathit{z}}{z-\mathrm{1}}}$$
現在,使用Z變換的n倍乘法性質$\mathrm{\left [ i.e,\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{ZT}}{\leftrightarrow}\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathit{X}\mathrm{\left(\mathit{z}\right)} \right ]}$,我們得到:
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\left\{\mathit{Z}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]} \right\}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathrm{\left(\frac{\mathit{z}}{z-\mathrm{1}} \right)}$$
$$\mathrm{\Rightarrow\mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\mathrm{\left [ \frac{\mathrm{\left ( \mathit{z}-\mathrm{1}\right)}\mathrm{\left( 1\right)}-\mathit{z}\mathrm{\left( 1\right)}}{\mathrm{\left(\mathit{z-\mathrm{1}}\right)}^{\mathrm{2}}} \right ]}}$$
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{2}}}}$$
再次使用Z變換的n倍乘法性質,我們得到:
$$\mathrm{\mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\left\{\mathit{Z}\mathrm{\left[\mathit{n}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]} \right\}\:\mathrm{=}\:\mathit{-z}\frac{\mathit{d}}{\mathit{dz}}\mathrm{\left[ \frac{\mathit{z}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{2}}}\right ]}}$$
$$\mathrm{\Rightarrow \mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\:\mathit{-z}\mathrm{\left[ \frac{\mathrm{\left ( \mathit{z}-\mathrm{1}\right)}^{\mathrm{2}}\mathrm{\left( 1\right)}-\mathrm{2}\mathit{z}\mathrm{\left( \mathit{z-\mathrm{1}}\right)}}{\mathrm{\left(\mathit{z-\mathrm{1}}\right)}^{\mathrm{4}}} \right ]}}$$
$$\mathrm{\Rightarrow\mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\: \mathit{-Z}\mathrm{\left [ \frac{\mathit{z-\mathrm{1}-\mathrm{2}\mathit{z}}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{3}}}\right ]}\:\mathrm{=}\:\mathit{-Z}\mathrm{\left [ \frac{\mathit{-z-\mathrm{1}}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{3}}}\right ]}}$$
$$\mathrm{\therefore \mathit{Z}\mathrm{\left[\mathit{n}^{\mathrm{2}}\mathit{u}\mathrm{\left(\mathit{n}\right)}\right ]}\:\mathrm{=}\: \frac{\mathit{z}\mathrm{\left ( \mathit{z}\mathrm{+}1 \right )}}{\mathrm{\left ( \mathit{z-\mathrm{1}} \right )}^{\mathrm{3}}}}$$
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP