離散時間傅立葉變換的頻域微分性質
離散時間傅立葉變換
離散時間序列的傅立葉變換稱為離散時間傅立葉變換 (DTFT)。
在數學上,離散時間序列 $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ 的離散時間傅立葉變換 (DTFT) 定義為:
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}}$$
DTFT 的頻域微分性質
說明 - 離散時間傅立葉變換的頻域微分性質指出,離散時間序列 $\mathit{x}\mathrm{\left(\mathit{n}\right)}$ 乘以 n 等效於其離散時間傅立葉變換在頻域中的微分。因此,如果:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{FT}}{\leftrightarrow}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}}$$
那麼
$$\mathrm{\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{FT}}{\leftrightarrow}\mathit{j}\frac{\mathit{d}}{\mathit{d\omega }}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}}$$
證明
根據 DTFT 的定義,我們有:
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}}$$
對等式兩邊關於 ω 求導,得到:
$$\mathrm{\frac{\mathit{d}}{\mathit{d\omega }}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:\frac{\mathit{d}}{\mathit{d\omega}}\mathrm{\left[\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}} \right ]}}$$
$$\mathrm{\Rightarrow\frac{\mathit{d}}{\mathit{d\omega}}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\frac{\mathit{d}}{\mathit{d\omega}}\mathit{e^{-\mathit{j\omega n}}}\:\mathrm{=}\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathrm{\left ( -\mathit{jn}\right )}\mathit{e^{-\mathit{j\omega n}}}}$$
$$\mathrm{\Rightarrow\frac{\mathit{d}}{\mathit{d\omega}}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:-\mathit{j}\sum_{\mathit{n=-\infty}}^{\infty}\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}\:\mathrm{=}\:-\mathit{j}\mathit{F}\mathrm{\left[\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}}$$
$$\mathrm{\therefore \mathit{F}\mathrm{\left[\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{j}\frac{\mathit{d}}{\mathit{d\omega }}\mathit{X}\mathrm{\left(\mathit{\omega }\right)}}$$
數值示例
使用 DTFT 的頻域微分性質,求以下序列的 DTFT:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{u}\right)}}$$
解決方案
給定的離散時間序列為:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{u}\right)}}$$
對等式兩邊進行 DTFT 變換,我們得到:
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n}\right)}\right]}\:\mathrm{=}\:\mathit{F}\mathrm{\left[\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{u}\right)} \right]}}$$
現在,使用 DTFT 的頻域微分性質 $\mathrm{\left [ i.e,\:\mathit{n}\mathit{x}\mathrm{\left(\mathit{n}\right)}\overset{\mathit{FT}}{\leftrightarrow}\mathit{j}\frac{\mathit{d}}{\mathit{d\omega }}\mathit{X}\mathrm{\left(\mathit{\omega }\right)} \right ]}$,我們得到:
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)} \right]}\:\mathrm{=}\:\mathit{j}\frac{\mathit{d}}{\mathit{d\omega }}\mathrm{\left\{\mathit{F}\mathrm{\left[\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)} \right]} \right\}}}$$
$$\mathrm{\Rightarrow\mathit{F}\mathrm{\left[\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)} \right]}\:\mathrm{=}\:\mathit{j}\frac{\mathit{d}}{\mathit{d\omega }}\mathrm{\left[\frac{1}{1-\mathrm{\left ( \frac{1}{3} \right)}\mathit{e^{-j\omega}}}\right ]}}$$
$$\mathrm{\Rightarrow\mathit{F}\mathrm{\left[\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)} \right]}\:\mathrm{=}\:\mathit{j}\mathrm{\left[ \frac{\mathrm{\left\{ 1-\mathrm{\left(\frac{1}{3}\right)}\mathit{e^{-\mathit{j\omega}}}\right\}}\mathrm{\left( 0 \right)}-\mathrm{\left( 1\right)}\mathrm{\left\{ \mathrm{\left[-\mathrm{\left ( \frac{1}{3}\right)}\mathit{e}^{-\mathit{j\omega}}\mathrm{\left ( -\mathit{j}\right)}\right ]}\right\}}}{\mathrm{\left\{1-\mathrm{\left ( \frac{1}{3} \right)}\mathit{e^{-j\omega }} \right\}}^{\mathrm{2}}} \right ]}}$$
$$\mathrm{\Rightarrow\mathit{F}\mathrm{\left[\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)} \right]}\:\mathrm{=}\:\mathit{j}\mathrm{\left[\frac{-\mathit{j\mathrm{\left( \frac{1}{3}\right)}\mathit{e^{-j\omega }}}}{\mathrm{\left\{1-\mathrm{\left( \frac{1}{3}\right)} \mathit{e^{-j\omega}}\right\}}^{\mathrm{2}}}\right ]}}$$
$$\mathrm{\therefore \mathit{F}\mathrm{\left[\mathit{n}\mathrm{\left( \frac{1}{3}\right)}^{\mathit{n}}\mathit{u}\mathrm{\left(\mathit{n}\right)} \right]}\:\mathrm{=}\:\frac{\mathrm{\left ( \frac{1}{3} \right )}\mathit{e^{-j\omega}}}{\mathrm{\left[1-\mathrm{\left ( \frac{1}{3}\right)} \mathit{e^{-j\omega }}\right ]}^{\mathrm{2}}}}$$