離散時間傅立葉變換
離散時間傅立葉變換
離散時間訊號可以使用離散時間傅立葉變換在頻域中表示。因此,離散時間序列的傅立葉變換稱為離散時間傅立葉變換 (DTFT)。
數學上,如果$\mathit{x}\mathrm{\left(\mathit{n}\right)}$是一個離散時間序列,則其離散時間傅立葉變換定義為 -
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n }\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}}$$
離散時間序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}$的離散時間傅立葉變換 X(ω) 表示該序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}$的頻率內容。因此,透過對離散時間序列進行傅立葉變換,將序列分解為其頻率成分。出於這個原因,DTFT X(ω) 也被稱為訊號頻譜。
離散時間傅立葉變換的存在條件
離散時間序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}$的傅立葉變換存在當且僅當序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}$是絕對可和的,即
$$\mathrm{\sum_{\mathit{n=-\infty}}^{\infty}\left|\mathit{x}\mathrm{\left(\mathit{n}\right)} \right|<\infty }$$
指數增長序列的離散時間傅立葉變換 (DTFT) 不存在,因為它們不是絕對可和的。
此外,分析系統的 DTFT 方法只能應用於漸近穩定的系統,不能應用於不穩定的系統,即 DTFT 只能用於分析其傳遞函式的極點位於單位圓內的系統。
數值示例 (1)
求序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{u}\mathrm{\left(\mathit{n}\right)}$的離散時間傅立葉變換。
解答
給定的離散時間序列為:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{u}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\begin{cases} 1 & \text{ 當 } n\geq 0 \ 0 & \text{ 當 } n< 0 \end{cases}}$$
現在,根據 DTFT 的定義,我們有:
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n }\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}}$$
$$\mathrm{\therefore \mathit{F}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n }\right)}\right]}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{u}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}\:\mathrm{=}\:\:\sum_{\mathit{n=\mathrm{0}}}^{\infty}\mathrm{\left ( 1 \right )}\mathit{e^{-j\omega n}}}$$
$$\mathrm{\Rightarrow\mathit{F}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n }\right)}\right]}\:\mathrm{=}\:\frac{1}{1-\mathit{e^{-j\omega }}}}$$
數值示例 (2)
求序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{u}\mathrm{\left(\mathit{n-k}\right)}$的 DTFT。
解答
給定的離散時間序列為:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{u}\mathrm{\left(\mathit{n-k}\right)}\:\mathrm{=}\:\begin{cases} 1 & \text{ 當 } n\geq k \ 0 & \text{ 當 } n< k \end{cases}}$$
現在,根據 DTFT 的定義,我們有:
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n }\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}}$$
$$\mathrm{\therefore \mathit{F}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n-k }\right)}\right]}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{u}\mathrm{\left(\mathit{n-k}\right)}\mathit{e^{-\mathit{j\omega n}}}\:\mathrm{=}\:\:\sum_{\mathit{n=k}}^{\infty}\mathrm{\left ( 1 \right )}\mathit{e^{-j\omega n}}}$$
$$\mathrm{\Rightarrow \mathit{F}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n-k }\right)}\right]}\:\mathrm{=}\:\mathit{e^{-j\omega k}\mathrm{+}\:\mathit{e^{-j\omega\mathrm{\left ( \mathit{k}+1 \right)}}\:\mathrm{+}\:\mathit{e^{-j\omega\mathrm{\left ( \mathit{k}+2 \right )} }}\:\mathrm{+}\:...}}}$$
$$\mathrm{\Rightarrow \mathit{F}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n-k }\right)}\right]}\:\mathrm{=}\:\mathit{e^{-j\omega k}\mathrm{\left ( 1\:\mathrm{+}\:\mathit{e^{-j\omega}}\:\mathrm{+}\:\mathit{e^{-j\mathrm{2}\omega}}\:\mathrm{+}\:\mathit{e^{-j\mathrm{3\omega }}}\:\mathrm{+}\:... \right )}}}$$
$$\mathrm{\therefore \mathit{F}\mathrm{\left[\mathit{u}\mathrm{\left(\mathit{n -k}\right)}\right]}\:\mathrm{=}\:\frac{\mathit{e^{-j\omega k}}}{1-\mathit{e^{-j\omega }}}}$$
數值示例 (3)
求序列$\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{\delta}\mathrm{\left(\mathit{n-k}\right)}$的 DTFT。
解答
給定的離散時間序列為:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathit{\delta}\mathrm{\left(\mathit{n-k}\right)}\:\mathrm{=}\:\begin{cases} 1 & \text{ 當 } n= k \ 0 & \text{ 當 } n
eq k \end{cases}}$$
因此,根據離散時間傅立葉變換的定義,我們有:
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n }\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}}$$
$$\mathrm{\therefore \mathit{F}\mathrm{\left[\mathit{\delta}\mathrm{\left(\mathit{n-k }\right)}\right]}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{\delta}\mathrm{\left(\mathit{n-k}\right)}\mathit{e^{-\mathit{j\omega n}}}\:\mathrm{=}\:\mathrm{\left [ \mathit{e^{-j\omega n}} \right]}_{\mathit{n=k}}}$$
$$\mathrm{\Rightarrow \mathit{F}\mathrm{\left[\mathit{\delta }\mathrm{\left(\mathit{n-k }\right)}\right]}\:\mathrm{=}\:\mathit{e^{-j\omega k}}}$$
數值示例 (4)
求離散時間傅立葉變換$\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathrm{\left\{1,3,-2,5 \right\}}$。
解答
給定的離散時間序列為:
$$\mathrm{\mathit{x}\mathrm{\left(\mathit{n}\right)}\:\mathrm{=}\:\mathrm{\left\{1,3,-2,5,2 \right\}}}$$
序列的 DTFT 定義為 -
$$\mathrm{\mathit{F}\mathrm{\left[\mathit{x}\mathrm{\left(\mathit{n }\right)}\right]}\:\mathrm{=}\:\mathit{X}\mathrm{\left(\mathit{\omega}\right)}\:\mathrm{=}\:\sum_{\mathit{n=-\infty}}^{\infty}\mathit{x}\mathrm{\left(\mathit{n}\right)}\mathit{e^{-\mathit{j\omega n}}}}$$
$$\mathrm{\Rightarrow \mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:\mathit{x}\:\mathrm{\left(\mathrm{0}\right)}\:\mathrm{+}\:\mathit{x}\mathrm{\left(\mathrm{1}\right)}\mathit{e^{-j\omega }}\:\mathrm{+}\:\mathit{x}\:\mathrm{\left(\mathrm{2}\right)}\mathit{e^{-j\mathrm{2}\omega}}\:\mathrm{+}\:\mathit{x}\:\mathrm{\left(\mathrm{3}\right)}\mathit{e^{-j\mathrm{3}\omega }}\:\mathrm{+}\:\mathit{x}\:\mathrm{\left(\mathrm{4}\right)}\mathit{e^{-j\mathrm{4}\omega }}}$$
$$\mathrm{\therefore \mathit{X}\mathrm{\left(\mathit{\omega }\right)}\:\mathrm{=}\:1\:\mathrm{+}\:3\mathit{e^{-j\omega }}-2\mathit{e^{-j\mathrm{2}\omega}}\:\mathrm{+}\:5\mathit{e^{-j\mathrm{3}\omega }}\:\mathrm{+}\:2\mathit{e^{-j\mathrm{4}\omega}}}$$
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP