傅立葉變換的頻域導數性質
傅立葉變換
連續時間函式的傅立葉變換可以定義為:
$$\mathrm{X(\omega)=\int_{−\infty }^{\infty}\:X(t)e^{-j\omega t}\:dt}$$
傅立葉變換的頻域微分性質
說明 − 傅立葉變換的頻域導數性質指出,在時域內將函式 X(t) 乘以 t 等效於在其頻域內對其傅立葉變換進行微分。因此,如果
$$\mathrm{X(t)\overset{FT}{\leftrightarrow}X(\omega)}$$
那麼,根據頻域導數性質,
$$\mathrm{t\cdot x(t)\overset{FT}{\leftrightarrow}j\frac{d}{d\omega}X(\omega)}$$
證明
根據傅立葉變換的定義,我們有:
$$\mathrm{X(\omega)=\int_{−\infty }^{\infty}x(t)e^{-j\omega t}\:dt}$$
對上述等式兩邊關於 ω 求導,得到:
$$\mathrm{\frac{d}{d\omega}X(\omega)=\frac{d}{d\omega}\left [ \int_{−\infty }^{\infty}x(t)e^{-j\omega t}\:dt \right ]}$$
$$\mathrm{\Rightarrow\:\frac{d}{d\omega}X(\omega)=\int_{−\infty }^{\infty} x(t)\frac{d}{d\omega}\left [e^{-j\omega t} \right ]dt}$$
$$\mathrm{\Rightarrow\:\frac{d}{d\omega}X(\omega)=\int_{−\infty }^{\infty} x(t)(-jt)e^{-j\omega t}dt}$$
$$\mathrm{\Rightarrow\:\frac{d}{d\omega}X(\omega)=-j\int_{−\infty }^{\infty}t\cdot x(t)e^{-j\omega t}dt=-jF[tx(t)]}$$
因此,
$$\mathrm{F[tx(t)]=j\frac{d}{d\omega}X(\omega)}$$
或者,它可以表示為
$$\mathrm{t\cdot x(t)\overset{FT}{\leftrightarrow}j\frac{d}{d\omega}X(\omega)}$$
數值示例
利用傅立葉變換的頻域導數性質,求函式 $[te^{-2t}\:u(t)]$ 的傅立葉變換。
解答
已知
$$\mathrm{x(t)=te^{-2t}u(t)}$$
令,
$$\mathrm{x_{1}(t)=e^{-2t}u(t)}$$
根據單邊指數函式的傅立葉變換定義,我們有:
$$\mathrm{F[e^{-at}u(t)]=\frac{1}{a+j\omega}}$$
因此,對於函式 $X_{1}(t)$,我們有:
$$\mathrm{X_{1}(\omega)=F[e^{-2t}u(t)]=\frac{1}{2+j\omega}}$$
現在,利用傅立葉變換的頻域導數性質 $[i.e., t\cdot x(t)\overset{FT}{\leftrightarrow}j\frac{d}{d\omega}X(\omega)] $,我們得到:
$$\mathrm{F[te^{-2t}u(t)]=j\frac{d}{d\omega}F[e^{-2t}u(t)]}$$
$$\mathrm{\Rightarrow\:F[te^{-2t}u(t)]=j\frac{d}{d\omega}\left (\frac{1}{2+j\omega} \right )=j\frac{-1(j)}{(2+j\omega)^2}}$$
因此,給定函式的傅立葉變換為:
$$\mathrm{F[te^{-2t}u(t)]=\frac{1}{(2+j\omega)^2}}$$
或者,它也可以寫成:
$$\mathrm{te^{-2t}u(t)\overset{FT}{\leftrightarrow}\frac{1}{(2+j\omega)^2}}$$
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP