已知平行四邊形$ABCD$,點$G$在$AB$上,且$AG = 2GB$;點$E$在$DC$上,且$CE = 2DE$;點$F$在$BC$上,且$BF = 2FC$。求證:$\operatorname{ar}(\mathrm{ADEG})=\operatorname{ar}(\mathrm{GBCE})$。
已知
$ABCD$是平行四邊形,點$G$在$AB$上,且$AG = 2GB$;點$E$在$DC$上,且$CE = 2DE$;點$F$在$BC$上,且$BF = 2FC$。
求證
我們需要證明$\operatorname{ar}(\mathrm{ADEG})=\operatorname{ar}(\mathrm{GBCE})$。
解答
作$EP \perp AB$,$EQ \perp BC$
$AB=2GB$,$CE=2DE$,$BF=2FC$
這意味著:
$AB - GB = 2GB$
$CD - DE = 2DE$
$BC - FC = 2FC$
$AB = 3BG$,$CD = 3DE$
$BC = 3FC$
$GB = \frac{1}{3}AB$,$DE = \frac{1}{3}CD$,$FC = \frac{1}{3}BC$……(i)
$\operatorname{ar}(\mathrm{ADEG}) = \frac{1}{2}(AG + DE) \times EP$
$\operatorname{ar}(\mathrm{ADEG}) = \frac{1}{2}(\frac{2}{3}AB + \frac{1}{3}CD) \times EP$
$\Rightarrow \operatorname{ar}(\mathrm{ADEG}) = \frac{1}{2}(\frac{2}{3}AB + \frac{1}{3}AB) \times EP$
$\Rightarrow \operatorname{ar}(\mathrm{ADEG}) = \frac{1}{2} \times AB \times EP$……(ii)
$\operatorname{ar}(\mathrm{GBCE}) = \frac{1}{2}(GB + CE) \times EP$
$\Rightarrow \operatorname{ar}(\mathrm{GBCE}) = \frac{1}{2}[\frac{1}{3}AB + \frac{2}{3}CD] \times EP$
$\Rightarrow \operatorname{ar}(\mathrm{GBCE}) = \frac{1}{2}[\frac{1}{3}AB + \frac{2}{3}AB] \times EP$
$\Rightarrow \operatorname{ar}(\mathrm{GBCE}) = \frac{1}{2} \times AB \times EP$……(iii)
由(ii)和(iii)可得:
$\operatorname{ar}(\mathrm{ADEG}) = \operatorname{ar}(\mathrm{GBCE})$
證畢。