帕塞瓦爾定理與傅立葉變換的帕塞瓦爾恆等式


傅立葉變換

對於連續時間函式 $\mathrm{\mathit{x\left ( t \right )}}$,$\mathrm{\mathit{x\left ( t \right )}}$ 的傅立葉變換可以定義為:

$$\mathrm{\mathit{X\left ( \omega \right )\mathrm{=}\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt }}$$

逆傅立葉變換定義為:

$$\mathrm{\mathit{x\left ( t \right )\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left ( \omega \right )e^{j\omega t}d\omega }} $$

傅立葉變換的帕塞瓦爾定理

陳述 - 帕塞瓦爾定理指出,訊號 $\mathrm{\mathit{x\left ( t \right )}}$ 在時域中的能量 [如果 $\mathrm{\mathit{x\left ( t \right )}}$ 是非週期的] 或功率 [如果 $\mathrm{\mathit{x\left ( t \right )}}$ 是週期的] 等於其在頻域中的能量或功率。

因此,如果:

$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\overset{FT}{\leftrightarrow} X_{\mathrm{1}}\left ( \omega \right )\;and \;x_{\mathrm{2}} \left ( t \right )\overset{FT}{\leftrightarrow} X_{\mathrm{2}}\left ( \omega \right )}}$$

那麼,傅立葉變換的帕塞瓦爾定理指出:

$$\mathrm{\mathit{\int_{-\infty }^{\infty }x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}^{*}\left ( t \right )dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( \omega \right )X_{\mathrm{2}}^{*}\left ( \omega \right )d\omega}} $$

其中,$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )}}$ 和 $\mathrm{\mathit{x_{\mathrm{2}}\left ( t \right )}}$ 是複函式。

證明

帕塞瓦爾關係由下式給出:

$$\mathrm{\mathit{\int_{-\infty }^{\infty }x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}^{*}\left ( t \right )dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( \omega \right )X_{\mathrm{2}}^{*}\left ( \omega \right )d\omega}}$$

根據逆傅立葉變換的定義,我們有:

$$\mathrm{LHS \mathrm{=} \mathit{\int_{-\infty }^{\infty }x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}^{*}\left ( t \right )dt\mathrm{=}\int_{-\infty }^{\infty }\left [ \frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( \omega \right )e^{j\omega t}d\omega \right ]x_{\mathrm{2}}^{*}\left ( t \right )dt}} $$

透過交換上述表示式右側積分的順序,我們得到:

$$\mathrm{\mathit{\int_{-\infty }^{\infty }x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}^{*}\left ( t \right )dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( \omega \right )\left [ \int_{-\infty }^{\infty }x_{\mathrm{2}}^{*}\left ( t \right )e^{j\omega t}dt \right ]d\omega }}$$

$$\mathrm{\Rightarrow \mathit{\int_{-\infty }^{\infty }x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}^{*}\left ( t \right )dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( \omega \right )\left [ \int_{-\infty }^{\infty }x_{\mathrm{2}}\left ( t \right )e^{-j\omega t}dt \right ]^{*}d\omega }}$$

$$\mathrm{\therefore \mathit{\int_{-\infty }^{\infty }x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}^{*}\left ( t \right )dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X_{\mathrm{1}}\left ( \omega \right )X_{\mathrm{2}}^{*}\left ( \omega \right )d\omega \mathrm{=}\mathrm{RHS}}}$$

傅立葉變換的帕塞瓦爾恆等式

傅立葉變換的帕塞瓦爾恆等式指出,訊號 $\mathit{x\left ( t \right )}$ 的能量含量由下式給出:

$$\mathrm{ \mathit{E\mathrm{=}\int_{-\infty }^{\infty }\left | x\left ( t \right ) \right |^{\mathrm{2}}dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }\left | X\left ( \omega \right ) \right |^{\mathrm{2}}d\omega}}$$

  • 帕塞瓦爾恆等式也稱為能量定理瑞利能量定理

  • 量 $\mathrm{\mathit{\left [ \left | X\left ( \omega \right ) \right |^{\mathrm{2}}\right ]}}$ 稱為訊號 $\mathit{x\left ( t \right )}$ 的能量密度譜。

證明

如果 $\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )}}$ = $\mathrm{\mathit{x_{\mathrm{2}}\left ( t \right )}}$ = $\mathit{x\left ( t \right )}$; 則訊號的能量由下式給出:

$$\mathrm{\mathit{E\mathrm{=}\int_{-\infty }^{\infty }x\left ( t \right )x^{*}\left ( t \right )dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }X\left ( \omega \right )X^{*}\left ( \omega \right )d\omega}}$$

$$\mathrm{\mathit{\because x\left ( t \right )x^{*}\left ( t \right )\mathrm{=}\left |x\left ( t \right ) \right |^{\mathrm{2}}\: \: and\: \: X\left ( \omega \right )X^{*}\left ( \omega \right )\mathrm{=}\left |X\left ( \omega \right ) \right |^{\mathrm{2}}}}$$

因此,

$$\mathrm{\mathit{E\mathrm{=}\int_{-\infty }^{\infty }\left | x\left ( t \right ) \right |^{\mathrm{2}}dt\mathrm{=}\frac{\mathrm{1}}{\mathrm{2}\pi }\int_{-\infty }^{\infty }\left | X\left ( \omega \right ) \right |^{\mathrm{2}}d\omega\; \; \; \; \mathrm{\left ( 證畢 \right )}}}$$

更新於: 2021年12月17日

41K+ 次瀏覽

開啟你的 職業生涯

透過完成課程獲得認證

開始學習
廣告
© . All rights reserved.