一條長為 $20\pi$ 釐米的弧在圓心處張成一個 $144^o$ 的角。求圓的半徑。


已知

圓心角 $=144^{\circ}$

弧長 $=20 \pi\ cm$

要求

我們需要求出圓的半徑。

解答

設圓的半徑為 $r$。

這意味著,

$2 \pi r(\frac{\theta}{360^{\circ}})=20 \pi$

$\Rightarrow 2 \pi r \times \frac{144^{\circ}}{360^{\circ}}=20 \pi$

$\Rightarrow 2 \pi r \times \frac{2}{5}=20 \pi$

$\Rightarrow r=\frac{20 \pi \times 5}{2 \pi \times 2}$

$\Rightarrow r=5 \times 5$

$\Rightarrow r=25$

圓的半徑為 $25\ cm$。

更新於: 2022年10月10日

73 次瀏覽

開啟你的 職業生涯

完成課程獲得認證

開始學習
廣告