時間卷積定理


卷積

兩個訊號 𝑥(𝑡) 和 ℎ(𝑡) 的卷積定義為:

$$\mathrm{y\left ( t \right )=x\left( t \right )\ast h\left ( t \right )=\int_{-\infty }^{\infty}x\left ( \tau \right )h\left ( t-\tau \right )d\tau}$$

這個積分也稱為**卷積積分**。

時間卷積定理

**陳述** - 時間卷積定理指出,時域中的卷積等效於頻域中其頻譜的乘積。因此,如果兩個時間訊號的傅立葉變換給出為:

$$\mathrm{x_{1}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1} \left ( \omega \right )}$$

以及

$$\mathrm{x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{2} \left ( \omega \right )}$$

那麼,根據時間卷積定理:

$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1} \left ( \omega \right )\cdot X_{2} \left ( \omega \right )}$$

證明

根據傅立葉變換的定義,我們有:

$$\mathrm{F\left [ x\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x\left ( t \right )e^{-j\omega t}dt}$$

因此,

$$\mathrm{F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]e^{-j\omega t}dt}$$

此外,根據卷積的定義,我們有:

$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )x_{2}\left ( t-\tau \right )d\tau }$$

$$\mathrm{\therefore F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }\left [ \int_{-\infty }^{\infty }x_{1}\left ( \tau \right )x_{2}\left ( t-\tau \right )d\tau \right ]e^{-j\omega t}dt}$$

透過重新排列積分順序,我們得到:

$$\mathrm{F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( t-\tau \right )e^{-j\omega t}dt \right ]d\tau}$$

在第二個積分中,用 (𝑡 − 𝜏) = 𝑢 替換,得到 𝑡 = 𝑢 + 𝜏 和 𝑑𝑡 = 𝑑𝑢

$$\mathrm{\therefore F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( u \right )e^{-j\omega \left ( u+\tau \right )}du \right ]d\tau}$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right )\left [ \int_{-\infty }^{\infty }x_{2}\left ( u \right )e^{-j\omega u}du \right ]e^{-j\omega \tau }d\tau}$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right ) X_{2}\left ( \omega \right )e^{-j\omega \tau }d\tau =X_{2}\left ( \omega \right )\int_{-\infty}^{\infty}x_{1}\left ( \tau \right )e^{-j\omega \tau }d\tau }$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=\int_{-\infty }^{\infty }x_{1}\left ( \tau \right ) X_{2}\left ( \omega \right )e^{-j\omega \tau }d\tau =X_{2}\left ( \omega \right )\int_{-\infty}^{\infty}x_{1}\left ( \tau \right )e^{-j\omega \tau }d\tau }$$

$$\mathrm{\Rightarrow F\left [ x_{1}\left ( t \right )\ast x_{2}\left ( t \right ) \right ]=X_{2}\left ( \omega \right )X_{1}\left ( \omega \right )}$$

因此,它證明了:

$$\mathrm{x_{1}\left ( t \right )\ast x_{2}\left ( t \right )\overset{FT}{\leftrightarrow}X_{1}\left ( \omega \right )\cdot X_{2}\left ( \omega \right )}$$

上述表示式稱為**時間卷積定理**。

更新於: 2021年12月15日

4K+ 閱讀量

開啟你的 職業生涯

透過完成課程獲得認證

開始學習
廣告