拉普拉斯變換的時間卷積和乘法性質
拉普拉斯變換
拉普拉斯變換是一種數學工具,用於將時域中的微分方程轉換為頻域或s域中的代數方程。
數學上,如果$\mathrm{\mathit{x\left ( t \right )}}$是時域函式,則其拉普拉斯變換定義為:
$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\,}X\left ( s \right )\mathrm{\, =\,}\int_{-\infty }^{\infty }x\left ( t \right )e^{-st}\:dt\; \; \cdot \cdot \cdot\left ( \mathrm{1} \right ) }}$$
公式 (1) 給出了函式 $\mathrm{\mathit{x\left ( t \right )}}$ 的雙邊拉普拉斯變換。但對於因果訊號,則應用單邊拉普拉斯變換,其定義為:
$$\mathrm{\mathit{L\left [ x\left ( t \right ) \right ]\mathrm{\, =\,}X\left ( s \right )\mathrm{\, =\,}\int_{\mathrm{0} }^{\infty }x\left ( t \right )e^{-st}\:dt\; \; \cdot \cdot \cdot\left ( \mathrm{2} \right ) }}$$
此外,拉普拉斯逆變換定義為:
$$\mathrm{\mathit{L^{\mathrm{-1}}\left [X\left ( s \right ) \right ]\mathrm{\, =\,}x\left ( t \right )\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\sigma -j\infty }^{\sigma \mathrm{\mathrm{\, +\,} }j\infty }X\left ( s \right )e^{st}\:ds\; \; \cdot \cdot \cdot\left ( \mathrm{3} \right ) }}$$
拉普拉斯變換的時間卷積性質
陳述 – 拉普拉斯變換的時間卷積性質指出,兩個訊號在時域中卷積的拉普拉斯變換等效於它們各自拉普拉斯變換的乘積。因此,如果
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{1}}\left ( s \right )\:\: \mathrm{and}\:\, x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{2}}\left ( s \right )}}$$
那麼,
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right )}}$$
證明
如果 $\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )}}$ 和 $\mathrm{\mathit{x_{\mathrm{2}}\left ( t \right )}}$ 是兩個時域因果訊號,則它們的卷積定義為:
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right )\mathrm{\, =\,}\int_{\mathrm{0}}^{t}x_{\mathrm{1}}\left ( t-\tau \right )x_{\mathrm{2}}\left ( \tau \right )d\tau }}$$
現在,根據拉普拉斯變換的定義,我們有:
$$\mathrm{\mathit{L\left [ x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }\left [\int_{\mathrm{0}}^{t} x_{\mathrm{1}}\left ( t-\tau \right )x_{\mathrm{2}}\left ( \tau \right )d\tau \right ]e^{-st}dt}}$$
$$\mathrm{\Rightarrow \mathit{L\left [ x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }\left [\int_{\mathrm{0}}^{\infty } x_{\mathrm{1}}\left ( t-\tau \right )x_{\mathrm{2}}\left ( \tau \right )d\tau \right ]e^{-st}dt}}$$
令 $\mathrm{\mathit{\left ( t-\tau \right )\mathrm{\, =\,}u,}}$ 則:
$$\mathrm{\mathit{t\mathrm{\, =\,}\left ( u\mathrm{\, +\,}\tau \right ) \: \mathrm{and}\: dt\mathrm{\, =\,}du}}$$
$$\mathrm{\mathit{\therefore L\left [ x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }\left [\int_{\mathrm{0}}^{\infty }x_{\mathrm{1}}\left ( u \right )x_{\mathrm{2}}\left ( \tau \right )d\tau \right ]e^{-s\left ( u\mathrm{\, +\,}\tau \right )}}du}$$
重新排列積分,我們有:
$$\mathrm{\mathit{L\left [ x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{\mathrm{0}}^{\infty }x_{\mathrm{1}}\left ( u \right )e^{-su}du\int_{\mathrm{0}}^{\infty }x_{\mathrm{2}}\left ( \tau \right )e^{-st}d\tau }} $$
$$\mathrm{\mathit{\therefore L\left [ x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right ) }} $$
或者可以表示為:
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\ast\: x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right ) }}$$
因此,它證明了拉普拉斯變換的時間卷積性質。
拉普拉斯變換的 s 域卷積性質
陳述 – s 域卷積性質,也稱為拉普拉斯變換的乘法性質或調製性質。拉普拉斯變換的頻域卷積性質指出,兩個時域訊號乘積的拉普拉斯變換等效於它們各自拉普拉斯變換的卷積。因此,如果
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\: \overset{LT}{\leftrightarrow}X_{\mathrm{1}}\left ( s \right )\; \; \mathrm{and}\; \; x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}X_{\mathrm{2}}\left ( s \right ) }}$$
那麼,
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\: x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left [ X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ] }}$$
證明
$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )}}$ 的拉普拉斯逆變換為:
$$\mathrm{\mathit{x_{\mathrm{1}}\left ( t \right )\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )e^{pt}\, dp}}$$
因此,根據拉普拉斯變換的定義,我們有:
$$\mathrm{\mathit{L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]e^{-st}\, dt}}$$
$$\mathrm{\mathit{\Rightarrow L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\int_{-\infty }^{\infty }\left [ \frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )e^{pt}\, dp \right ]x_{\mathrm{2}}\left ( t \right )e^{-st}\, dt}}$$
重新排列積分順序,我們有:
$$\mathrm{\mathit{ L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )\left [\int_{-\infty }^{\infty }x_{\mathrm{2}}\left ( t \right ) e^{-\left ( s-p \right )t}\, dt \right ]\, dp}}$$
$$\mathrm{\Rightarrow \mathit{ L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\int_{\left ( \sigma -j\infty \right )}^{\left (\sigma \mathrm{\, +\,}j\infty \right )}X_{\mathrm{1}}\left ( p \right )X_{\mathrm{2}}\left ( s-p \right )\, dp}}$$
$$\mathrm{\therefore \mathit{ L\left [ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right ) \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left [ X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ]}}$$
或者也可以表示為:
$$\mathrm{\mathit{ x_{\mathrm{1}}\left ( t \right )x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left [ X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ]}}$$
因此,它證明了拉普拉斯變換的乘法性質或 s 域卷積性質。
數值示例 (1)
單個 $\mathrm{\mathit{x\left ( t \right )}}$ 的拉普拉斯變換為:
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\, =\,}\frac{s\mathrm{\, +\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\, +\,}\mathrm{2}s\mathrm{\, +\,}\mathrm{1}}}}$$
然後,求 $\mathrm{\mathit{y\left ( t \right )\mathrm{\, =\,}x\left ( t \right )\ast x\left ( t \right )}}$ 的拉普拉斯變換。
解答
給定的 $\mathrm{\mathit{x\left ( t \right )}}$ 的拉普拉斯變換為:
$$\mathrm{\mathit{X\left ( s \right )\mathrm{\, =\,}\frac{s\mathrm{\, +\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\, +\,}\mathrm{2}s\mathrm{\, +\,}\mathrm{1}}}}$$
然後,$\mathrm{\mathit{y\left ( t \right )}}$ 的拉普拉斯變換,即 Y(s) 為:
$$\mathrm{\mathit{L\left [ y\left ( t \right ) \right ]\mathrm{\, =\,}Y\left ( s \right )\mathrm{\, =\,}L\left [ x\left ( t \right )\ast x\left ( t \right ) \right ]}}$$
現在,使用拉普拉斯變換的時間卷積性質 $\mathrm{\mathit{\left [\mathrm{i.e.,\: \: } x_{\mathrm{1}}\left ( t \right )\ast x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow} X_{\mathrm{1}}\left ( s \right )X_{\mathrm{2}}\left ( s \right ) \right ]}}$,我們有:
$$\mathrm{\mathit{Y\left ( s \right )\mathrm{\, =\,}X\left ( s \right )\cdot X\left ( s \right )\mathrm{\, =\,}\left [ X\left ( s \right ) \right ]^{\mathrm{2}}}}$$
$$\mathrm{\mathit{\therefore Y\left ( s \right )\mathrm{\, =\,}\left [ \frac{s\mathrm{\, +\,}\mathrm{3}}{s^{\mathrm{2}}\mathrm{\, +\,}\mathrm{2}s\mathrm{\, +\,}\mathrm{1}} \right ]^{\mathrm{2}}}}$$
數值示例 (2)
使用拉普拉斯變換的 s 域卷積性質,求函式 $\mathrm{\mathit{x\left ( t \right )\mathrm{\, =\,}\delta \left ( t \right )\, \mathrm{sin}\, \omega t}}$ 的拉普拉斯變換。
解答
給定函式為:
$$\mathrm{\mathit{x\left ( t \right )\mathrm{\, =\,}\delta \left ( t \right )\, \mathrm{sin}\, \omega t}}$$
因為我們知道:
$$\mathrm{\mathit{L\left [ \delta \left ( t \right ) \right ]\mathrm{\, =\,}\mathrm{1}\; \; \mathrm{and}\; \: L\left [ \mathrm{sin}\, \omega t \right ]\mathrm{\, =\,}\frac{\omega }{s^{\mathrm{2}}\mathrm{\, +\,}\omega ^{\mathrm{2}}}}}$$
因此,透過使用拉普拉斯變換的 s 域卷積性質 {$\mathrm{\mathit{\mathrm{i.e.,\: \: } x_{\mathrm{1}}\left ( t \right ) x_{\mathrm{2}}\left ( t \right )\overset{LT}{\leftrightarrow}\frac{\mathrm{1}}{\mathrm{2}\pi j} \left [X_{\mathrm{1}}\left ( s \right )\ast X_{\mathrm{2}}\left ( s \right ) \right ]}}$},我們有:
$$L\left [ \delta \left ( t \right )\mathrm{sin}\, \omega t \right ]\mathrm{\, =\,}\frac{\mathrm{1}}{\mathrm{2}\pi j}\left ( \frac{\omega }{s^{\mathrm{2}}\mathrm{\, +\,}\omega ^{\mathrm{2}}} \right )$$
資料結構
網路
關係資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP