阿夫塔布告訴女兒:“七年前,我的年齡是你當時年齡的七倍。另外,三年後,我的年齡將是你當時年齡的三倍。”這很有趣,不是嗎?用代數和圖形表示這種情況。
已知
阿夫塔布告訴女兒:“七年前,我的年齡是你當時年齡的七倍。另外,三年後,我的年齡將是你當時年齡的三倍。”
任務
我們必須用代數和圖形表示上述情況。
解答
設阿夫塔布現在的年齡為$x$,他女兒現在的年齡為$y$。
阿夫塔布七年前的年齡$=x-7$。
他女兒七年前的年齡$=y-7$。
阿夫塔布三年後的年齡$=x+3$。
他女兒三年後的年齡$=y+3$。
根據題意,
$x-7 = 7(y-7)$
$\Rightarrow x-7=7y-49$
$\Rightarrow x-7y+42= 0$.....(i)
$7y=x+42$
$y=\frac{x+42}{7}$
另外,
$x+3 = 3(y+3)$
$\Rightarrow x+3=3y+9$
$\Rightarrow x-3y-6=0$......(ii)
$3y=x-6$
$y=\frac{x-6}{3}$
為了用圖形表示上述方程,我們需要每個方程至少兩個解。
對於方程 (i),
如果 $x=-7$,則 $y=\frac{-7+42}{7}=\frac{35}{7}=5$
如果 $x=0$,則 $y=\frac{0+42}{7}=6$
如果 $x=7$,則 $y=\frac{7+42}{7}=\frac{49}{7}=7$
| $x$ | $-7$ | $0$ | $7$ |
| $y=\frac{x+42}{7}$ | $5$ | $6$ | $7$ |
對於方程 (ii),
如果 $x=0$,則 $y=\frac{0-6}{3}=\frac{-6}{3}=-2$
如果 $y=0$,則 $0=\frac{x-6}{3}$
$\Rightarrow x=6$
如果 $x=3$,則 $y=\frac{3-6}{3}=\frac{-3}{3}=-1$
| $x$ | $6$ | $3$ | $0$ |
$y=\frac{x-6}{3}$ | $0$ | $-1$ | $-2$ |
上述情況可以用下圖表示

直線AC表示方程$x-7y+42=0$,直線PR表示方程$x-3y-6=0$。
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP