複數和實數函式的傅立葉變換
傅立葉變換
對於連續時間函式 𝑥(𝑡),𝑥(𝑡) 的傅立葉變換可以定義為:
$$\mathrm{X\left ( \omega \right )=\int_{-\infty }^{\infty}x\left ( t \right )e^{-j\omega t}dt}$$
並且逆傅立葉變換定義為:
$$\mathrm{x\left ( t \right )=\frac{1}{2\pi }\int_{-\infty }^{\infty}X\left ( \omega \right )e^{j\omega t}d\omega}$$
複數函式的傅立葉變換
考慮一個表示為以下形式的複數函式 𝑥(𝑡):
$$\mathrm{x\left ( t \right )=x_{r}\left ( t \right )+jx_{i}\left ( t \right )}$$
其中,𝑥𝑟 (𝑡) 和 𝑥𝑖 (𝑡) 分別是函式的實部和虛部。
現在,函式 𝑥(𝑡) 的傅立葉變換由下式給出:
$$\mathrm{F\left [ x\left ( t \right ) \right ]=X\left ( \omega \right )=\int_{-\infty }^{\infty}x\left ( t \right )e^{-j\omega t}dt=\int_{-\infty}^{\infty}\left [ x_{r}\left ( t \right )+jx_{i}\left ( t \right ) \right ]e^{-j\omega t}dt}$$
$$\mathrm{\Rightarrow X\left ( \omega \right )=\int_{-\infty}^{\infty}\left [ x_{r}\left ( t \right )+jx_{i}\left ( t \right ) \right ]\left [ \cos \omega t-j\sin \omega t \right ]dt}$$
$$\mathrm{\Rightarrow X\left ( \omega \right )=\int_{-\infty}^{\infty}\left [ x_{r}\left ( t \right )\cos \omega t+x_{i}\left ( t \right )\sin \omega t \right ]dt+j\int_{-\infty}^{\infty}\left [ x_{i}\left ( t \right )\cos \omega t-x_{r}\left ( t \right )\sin \omega t \right ]dt}$$
因此,複數函式的傅立葉變換為:
$$\mathrm{X(\omega )=X_{r}\left ( \omega \right )+jX_{i}\left ( \omega \right )}$$
其中,
$$\mathrm{X_{r}(\omega )=\int_{-\infty}^{\infty}\left [ x_{r}\left ( t \right )\cos \omega t+x_{i}\left ( t \right )\sin \omega t \right ]dt}$$
以及
$$\mathrm{X_{i}(\omega )=\int_{-\infty}^{\infty}\left [ x_{i}\left ( t \right )\cos \omega t-x_{r}\left ( t \right )\sin \omega t \right ]dt} $$
複數函式的逆傅立葉變換
根據逆傅立葉變換的定義,我們有:
$$\mathrm{x\left ( t \right )=\frac{1}{2\pi }\int_{-\infty }^{\infty}X\left ( \omega \right )e^{j\omega t}d\omega}$$
$$\mathrm{=\frac{1}{2\pi }\int_{-\infty }^{\infty}\left [ X_{r}\left ( \omega \right )+jX_{i}\left ( \omega \right ) \right ]\left [ \cos \omega t+j\sin \omega t \right ]d\omega} $$
$$\mathrm{\Rightarrow x\left ( t \right )=\frac{1}{2\pi }\int_{-\infty }^{\infty}\left [ X_{r}\left ( \omega \right )\cos \omega t-X_{i}\left ( \omega \right )sin \omega t \right ]d\omega+j\frac{1}{2\pi }\int_{-\infty }^{\infty}\left [ X_{r}\left ( \omega \right )\sin \omega t+X_{i}\left ( \omega \right )cos \omega t \right ]d\omega}$$
因此,
$$\mathrm{x\left ( t \right )=x_{r}\left ( t \right )+jx_{i}(t)}$$
其中,
$$\mathrm{x_{r}\left ( t \right )=\frac{1}{2\pi }\int_{-\infty }^{\infty}\left [ X_{r}\left ( \omega \right )\cos \omega t-X_{i}\left ( \omega \right )sin \omega t \right ]d\omega}$$
以及
$$\mathrm{ x_{i}\left ( t \right )=\frac{1}{2\pi }\int_{-\infty }^{\infty}\left [ X_{r}\left ( \omega \right )\sin \omega t+X_{i}\left ( \omega \right )cos \omega t \right ]d\omega}$$
實數函式的傅立葉變換
情況一 – 當 𝑥(𝑡) 是一個實數函式時,
$$\mathrm{x_{i}\left ( t \right )=0\; \; and\; \; X\left ( -\omega \right )=X^{\ast }\left ( \omega \right )}$$
因此,函式的實部和虛部的傅立葉變換為:
$$\mathrm{X_{r}\left ( \omega \right )=\int_{-\infty }^{\infty}x\left ( t \right )\cos \omega t\; dt} $$
$$\mathrm{X_{i}\left ( \omega \right )=-\int_{-\infty }^{\infty}x\left ( t \right )\sin \omega t\; dt}$$
$$\mathrm{\therefore X\left ( \omega \right )=\int_{-\infty }^{\infty}x\left ( t \right )\cos \omega t\; dt-j\int_{-\infty }^{\infty}x\left ( t \right )\sin \omega t\; dt}$$
情況二 – 當 𝑥(𝑡) 是實數且為偶函式時,
$$\mathrm{X_{r}\left ( \omega \right )=\int_{-\infty }^{\infty}x\left ( t \right )\cos \omega t\; dt=2\int_{0 }^{\infty}x\left ( t \right )\cos \omega t\; dt} $$
$$\mathrm{X_{i}\left ( \omega \right )=0}$$
$$\mathrm{\therefore X\left ( \omega \right )=2\int_{0 }^{\infty}x\left ( t \right )\cos \omega t\; dt}$$
情況三 – 當 𝑥(𝑡) 是實數且為奇函式時,
$$\mathrm{X_{r}\left ( \omega \right )=0}$$
$$\mathrm{X_{i}\left ( \omega \right )=jX\left ( \omega \right )=-j\int_{-\infty }^{\infty}x\left ( t \right )\sin \omega t\; dt}$$
$$\mathrm{\Rightarrow X_{i}\left ( \omega \right )=-j2\int_{0 }^{\infty}x\left ( t \right )\sin \omega t\; dt}$$
$$\mathrm{\therefore X\left ( \omega \right )=-j2\int_{0 }^{\infty}x\left ( t \right )\sin \omega t\; dt}$$
如果 𝑥𝑒 (𝑡) 和 𝑥𝑜 (𝑡) 是函式 𝑥(𝑡) 的偶部和奇部,那麼對於非對稱函式,我們有:
$$\mathrm{F\left [ x\left ( t \right ) \right ]=X\left ( \omega \right )=X_{r}\left ( \omega \right )+jX_{i}\left ( \omega \right )} $$
$$\mathrm{\Rightarrow X\left ( \omega \right )=\int_{-\infty }^{\infty}x_{e}\left ( t \right )\cos \omega t\; dt-j\int_{-\infty }^{\infty}x_{0}\left ( t \right )\sin \omega t\; dt=X_{e}\left ( \omega \right )+X_{0}\left ( \omega \right )}$$