
- Python Pandas 教程
- Python Pandas - 首頁
- Python Pandas - 簡介
- Python Pandas - 環境設定
- Python Pandas - 基礎
- Python Pandas - 資料結構介紹
- Python Pandas - 索引物件
- Python Pandas - Panel (面板)
- Python Pandas - 基本功能
- Python Pandas - 索引和資料選擇
- Python Pandas - Series (序列)
- Python Pandas - Series (序列)
- Python Pandas - 切片 Series 物件
- Python Pandas - Series 物件的屬性
- Python Pandas - Series 物件的算術運算
- Python Pandas - 將 Series 轉換為其他物件
- Python Pandas - DataFrame (資料框)
- Python Pandas - DataFrame (資料框)
- Python Pandas - 訪問 DataFrame
- Python Pandas - 切片 DataFrame 物件
- Python Pandas - 修改 DataFrame
- Python Pandas - 從 DataFrame 中刪除行
- Python Pandas - DataFrame 的算術運算
- Python Pandas - I/O 工具
- Python Pandas - I/O 工具
- Python Pandas - 使用 CSV 格式
- Python Pandas - 讀取和寫入 JSON 檔案
- Python Pandas - 從 Excel 檔案讀取資料
- Python Pandas - 將資料寫入 Excel 檔案
- Python Pandas - 使用 HTML 資料
- Python Pandas - 剪貼簿
- Python Pandas - 使用 HDF5 格式
- Python Pandas - 與 SQL 的比較
- Python Pandas - 資料處理
- Python Pandas - 排序
- Python Pandas - 重新索引
- Python Pandas - 迭代
- Python Pandas - 級聯
- Python Pandas - 統計函式
- Python Pandas - 描述性統計
- Python Pandas - 處理文字資料
- Python Pandas - 函式應用
- Python Pandas - 選項和自定義
- Python Pandas - 視窗函式
- Python Pandas - 聚合
- Python Pandas - 合併/連線
- Python Pandas - 多級索引
- Python Pandas - 多級索引的基礎知識
- Python Pandas - 使用多級索引進行索引
- Python Pandas - 使用多級索引的高階重新索引
- Python Pandas - 重新命名多級索引標籤
- Python Pandas - 對多級索引進行排序
- Python Pandas - 二元運算
- Python Pandas - 二元比較運算
- Python Pandas - 布林索引
- Python Pandas - 布林掩碼
- Python Pandas - 資料重塑和透視
- Python Pandas - 透視表
- Python Pandas - 堆疊和取消堆疊
- Python Pandas - 熔化
- Python Pandas - 計算虛擬變數
- Python Pandas - 分類資料
- Python Pandas - 分類資料
- Python Pandas - 分類資料的排序和排序
- Python Pandas - 比較分類資料
- Python Pandas - 處理缺失資料
- Python Pandas - 缺失資料
- Python Pandas - 填充缺失資料
- Python Pandas - 缺失值的插值
- Python Pandas - 刪除缺失資料
- Python Pandas - 使用缺失資料進行計算
- Python Pandas - 處理重複項
- Python Pandas - 重複資料
- Python Pandas - 計數和檢索唯一元素
- Python Pandas - 重複標籤
- Python Pandas - 分組和聚合
- Python Pandas - GroupBy
- Python Pandas - 時間序列資料
- Python Pandas - 日期功能
- Python Pandas - 時間增量
- Python Pandas - 稀疏資料結構
- Python Pandas - 稀疏資料
- Python Pandas - 視覺化
- Python Pandas - 視覺化
- Python Pandas - 其他概念
- Python Pandas - 警告和陷阱
- Python Pandas 有用資源
- Python Pandas - 快速指南
- Python Pandas - 有用資源
- Python Pandas - 討論
Python Pandas - 時間增量
Timedeltas 是時間差,以不同的單位表示,例如天、小時、分鐘、秒。它們可以是正數也可以是負數。
我們可以使用各種引數建立 Timedelta 物件,如下所示:
字串
透過傳遞字串文字,我們可以建立一個 timedelta 物件。
import pandas as pd print pd.Timedelta('2 days 2 hours 15 minutes 30 seconds')
其輸出如下:
2 days 02:15:30
整數
透過傳遞帶有單位的整數值,引數建立一個 Timedelta 物件。
import pandas as pd print pd.Timedelta(6,unit='h')
其輸出如下:
0 days 06:00:00
資料偏移量
資料偏移量,例如 - 周、天、小時、分鐘、秒、毫秒、微秒、納秒,也可以用於構造。
import pandas as pd print pd.Timedelta(days=2)
其輸出如下:
2 days 00:00:00
to_timedelta()
使用頂級pd.to_timedelta,您可以將標量、陣列、列表或序列從識別的 timedelta 格式/值轉換為 Timedelta 型別。如果輸入是 Series,它將構造 Series;如果輸入是標量,則輸出標量;否則將輸出TimedeltaIndex。
import pandas as pd print pd.Timedelta(days=2)
其輸出如下:
2 days 00:00:00
運算
您可以對 Series/DataFrame 進行運算,並透過對datetime64[ns] Series 或 Timestamps 進行減法運算來構造timedelta64[ns] Series。
現在讓我們建立一個包含 Timedelta 和 datetime 物件的 DataFrame,並對其進行一些算術運算:
import pandas as pd s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D')) td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ]) df = pd.DataFrame(dict(A = s, B = td)) print df
其輸出如下:
A B 0 2012-01-01 0 days 1 2012-01-02 1 days 2 2012-01-03 2 days
加法運算
import pandas as pd s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D')) td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ]) df = pd.DataFrame(dict(A = s, B = td)) df['C']=df['A']+df['B'] print df
其輸出如下:
A B C 0 2012-01-01 0 days 2012-01-01 1 2012-01-02 1 days 2012-01-03 2 2012-01-03 2 days 2012-01-05
減法運算
import pandas as pd s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D')) td = pd.Series([ pd.Timedelta(days=i) for i in range(3) ]) df = pd.DataFrame(dict(A = s, B = td)) df['C']=df['A']+df['B'] df['D']=df['C']+df['B'] print df
其輸出如下:
A B C D 0 2012-01-01 0 days 2012-01-01 2012-01-01 1 2012-01-02 1 days 2012-01-03 2012-01-04 2 2012-01-03 2 days 2012-01-05 2012-01-07
廣告