
- Python Pandas 教程
- Python Pandas - 首頁
- Python Pandas - 簡介
- Python Pandas - 環境設定
- Python Pandas - 基礎
- Python Pandas - 資料結構介紹
- Python Pandas - 索引物件
- Python Pandas - 面板
- Python Pandas - 基本功能
- Python Pandas - 索引和資料選擇
- Python Pandas - Series
- Python Pandas - Series
- Python Pandas - 切片 Series 物件
- Python Pandas - Series 物件的屬性
- Python Pandas - Series 物件的算術運算
- Python Pandas - 將 Series 轉換為其他物件
- Python Pandas - DataFrame
- Python Pandas - DataFrame
- Python Pandas - 訪問 DataFrame
- Python Pandas - 切片 DataFrame 物件
- Python Pandas - 修改 DataFrame
- Python Pandas - 從 DataFrame 中刪除行
- Python Pandas - DataFrame 的算術運算
- Python Pandas - I/O 工具
- Python Pandas - I/O 工具
- Python Pandas - 使用 CSV 格式
- Python Pandas - 讀取和寫入 JSON 檔案
- Python Pandas - 從 Excel 檔案讀取資料
- Python Pandas - 將資料寫入 Excel 檔案
- Python Pandas - 使用 HTML 資料
- Python Pandas - 剪貼簿
- Python Pandas - 使用 HDF5 格式
- Python Pandas - 與 SQL 的比較
- Python Pandas - 資料處理
- Python Pandas - 排序
- Python Pandas - 重索引
- Python Pandas - 迭代
- Python Pandas - 連線
- Python Pandas - 統計函式
- Python Pandas - 描述性統計
- Python Pandas - 使用文字資料
- Python Pandas - 函式應用
- Python Pandas - 選項和自定義
- Python Pandas - 視窗函式
- Python Pandas - 聚合
- Python Pandas - 合併/連線
- Python Pandas - 多級索引
- Python Pandas - 多級索引基礎
- Python Pandas - 使用多級索引進行索引
- Python Pandas - 使用多級索引的高階重索引
- Python Pandas - 重新命名多級索引標籤
- Python Pandas - 對多級索引進行排序
- Python Pandas - 二元運算
- Python Pandas - 二元比較運算
- Python Pandas - 布林索引
- Python Pandas - 布林掩碼
- Python Pandas - 資料重塑和透視
- Python Pandas - 透視
- Python Pandas - 堆疊和取消堆疊
- Python Pandas - 熔化
- Python Pandas - 計算虛擬變數
- Python Pandas - 分類資料
- Python Pandas - 分類資料
- Python Pandas - 分類資料的排序和排序
- Python Pandas - 分類資料的比較
- Python Pandas - 處理缺失資料
- Python Pandas - 缺失資料
- Python Pandas - 填充缺失資料
- Python Pandas - 缺失值的插值
- Python Pandas - 刪除缺失資料
- Python Pandas - 使用缺失資料進行計算
- Python Pandas - 處理重複項
- Python Pandas - 重複資料
- Python Pandas - 計數和檢索唯一元素
- Python Pandas - 重複標籤
- Python Pandas - 分組和聚合
- Python Pandas - GroupBy
- Python Pandas - 時間序列資料
- Python Pandas - 日期功能
- Python Pandas - Timedelta
- Python Pandas - 稀疏資料結構
- Python Pandas - 稀疏資料
- Python Pandas - 視覺化
- Python Pandas - 視覺化
- Python Pandas - 其他概念
- Python Pandas - 警告和陷阱
- Python Pandas 有用資源
- Python Pandas - 快速指南
- Python Pandas - 有用資源
- Python Pandas - 討論
Python Pandas - 稀疏資料
當任何與特定值(NaN/缺失值,儘管可以選擇任何值)匹配的資料被省略時,稀疏物件會被“壓縮”。一個特殊的 SparseIndex 物件跟蹤資料在哪裡被“稀疏化”。在一個例子中,這將更有意義。所有標準的 Pandas 資料結構都應用 to_sparse 方法 -
import pandas as pd import numpy as np ts = pd.Series(np.random.randn(10)) ts[2:-2] = np.nan sts = ts.to_sparse() print sts
其 輸出 如下 -
0 -0.810497 1 -1.419954 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 0.439240 9 -1.095910 dtype: float64 BlockIndex Block locations: array([0, 8], dtype=int32) Block lengths: array([2, 2], dtype=int32)
稀疏物件出於記憶體效率的原因而存在。
現在讓我們假設您有一個大型的 NA DataFrame 並執行以下程式碼 -
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10000, 4)) df.ix[:9998] = np.nan sdf = df.to_sparse() print sdf.density
其 輸出 如下 -
0.0001
任何稀疏物件都可以透過呼叫 to_dense 轉換回標準的密集形式 -
import pandas as pd import numpy as np ts = pd.Series(np.random.randn(10)) ts[2:-2] = np.nan sts = ts.to_sparse() print sts.to_dense()
其 輸出 如下 -
0 -0.810497 1 -1.419954 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 0.439240 9 -1.095910 dtype: float64
稀疏資料型別
稀疏資料應與其密集表示具有相同的資料型別。目前,支援 float64、int64 和 bool 資料型別。根據原始 dtype,fill_value 預設值 會發生變化 -
float64 - np.nan
int64 - 0
bool - False
讓我們執行以下程式碼來理解相同的內容 -
import pandas as pd import numpy as np s = pd.Series([1, np.nan, np.nan]) print s s.to_sparse() print s
其 輸出 如下 -
0 1.0 1 NaN 2 NaN dtype: float64 0 1.0 1 NaN 2 NaN dtype: float64
廣告