求解方程組有無窮多解時k的值

2x + 3y = 2
(k + 2)x + (2k + 1)y = 2(k - 1)


已知:方程組為

2x + 3y = 2; (k + 2)x + (2k + 1)y = 2(k - 1)

求解: 求解方程組有無窮多解時k的值


解:

給定的方程組可以寫成

2x + 3y = 2


(k + 2)x + (2k + 1)y = 2(k - 1)


給定的方程組的形式為


a₁x + b₁y + c₁ = 0


a₂x + b₂y + c₂ = 0


這裡,a₁ = 2, b₁ = 3, c₁ = -2; a₂ = (k + 2), b₂ = 2k + 1, c₂ = -2(k - 1)


對於無窮多解,必須有:


a₁/a₂ = b₁/b₂ = c₁/c₂


2/(k + 2) = 3/(2k + 1) = -2/[-2(k - 1)]


2/(k + 2) = 3/(2k + 1) = 1/(k - 1)


2/(k + 2) = 3/(2k + 1) 且 3/(2k + 1) = 1/(k - 1)


2(2k + 1) = 3(k + 2) 且 3(k - 1) = 2k + 1


4k + 2 = 3k + 6 且 3k - 3 = 2k + 1


4k - 3k = -2 + 6 且 3k - 2k = 3 + 1


k = 4 且 k = 4


k = 4 滿足兩個條件


因此,當k = 4時,給定的方程組有無窮多解




更新於:2022年10月10日

97 次瀏覽

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.