拉普拉斯變換的初始值定理
拉普拉斯變換
拉普拉斯變換是一種數學工具,用於將時域中的微分方程轉換為頻域或 *s* 域中的代數方程。
數學上,如果 $\mathit{x}\mathrm{(\mathit{t})}$ 是一個時域函式,那麼它的拉普拉斯變換定義為:
$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt} \:\:\:...(1)$$
公式 (1) 給出了函式 $\mathit{x}\mathrm{(\mathit{t})}$ 的雙邊拉普拉斯變換。但對於因果訊號,則應用單邊拉普拉斯變換,其定義為:
$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty}\mathit{x}\mathrm{\mathrm{(\mathit{t})}\mathit{e^{-st}}}\mathit{dt} \:\:\:...(2)$$
初始值定理
拉普拉斯變換的初始值定理使我們能夠直接從其拉普拉斯變換 X(s) 計算函式 $\mathit{x}\mathrm{(\mathit{t})}$ 的初始值 [即 $\:\:\mathit{x}\mathrm{(0)}$],而無需求 X(s) 的反拉普拉斯變換。
定理陳述
拉普拉斯變換的**初始值定理**指出,如果
$$\mathit{x}\mathrm{(t)}\:\overset{\mathit{LT}}\longleftrightarrow\:\mathit{X}\mathrm{(\mathit{s})}$$
那麼,
$$\lim_{t \rightarrow \mathrm{0}}\mathit{x}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathit{x}\mathrm{(0)}\:\mathrm{=}\:\lim_{s \rightarrow \infty}\mathit{sX}\mathrm{(\mathit{s})}$$
證明
根據單邊拉普拉斯變換的定義,我們有:
$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\int_{\mathrm{0}}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\:\mathit{dt}$$
對等式兩邊求導,我們得到:
$$\mathit{L}\mathrm{[\frac{\mathit{dx\mathrm{(\mathit{t})}}}{\mathit{dt}}]}\:\mathrm{=}\:\:\int_{\mathrm{0}}^{\infty}\mathit{\frac{\mathit{dx}\mathrm{(\mathit{t})}}{\mathit{dt}}\mathit{e^{-st}}}\:\mathit{dt}$$
根據拉普拉斯變換的求導性質 $[i.e..,\:\mathrm{\frac{\mathit{dx\mathrm{(\mathit{t})}}}{\mathit{dt}}}\:\overset{LT}\longleftrightarrow\:\mathit{sX}\mathrm{(\mathit{s})}\:-\:\mathit{x}\mathrm{(0^{-})}]$,我們得到:
$$\mathit{L}\mathrm{[\frac{\mathit{dx\mathrm{(\mathit{t})}}}{\mathit{dt}}]}\:\mathrm{=}\:\:\int_{\mathrm{0}}^{\infty}\mathit{\frac{\mathit{dx}\mathrm{(\mathit{t})}}{\mathit{dt}}\mathit{e^{-st}}}\:\mathit{dt}\:\mathrm{=}\:\mathit{sX}\mathrm{(\mathit{s})}-\mathit{x}\mathrm{(0^{-})}$$
現在,對等式兩邊取 $\lim_{s\rightarrow\infty}$,我們有:
$$\lim_{s \rightarrow \infty}\lbrace\:\int_{\mathrm{0}}^{\infty}\mathit{\frac{\mathit{dx}\mathrm{(\mathit{t})}}{\mathit{dt}}\mathit{e^{-st}}}\:\mathit{dt}\rbrace\:\mathrm{=}\:\lim_{s \rightarrow \infty}\lbrace\mathit{sX}\mathrm{(\mathit{s})}-\mathit{x}\mathrm{(0)}\rbrace$$ $$\Rightarrow\mathrm{0}\:\mathrm{=}\:\lim_{s \rightarrow \infty}\mathit{sX}\mathrm{(s)}-\mathit{x}\mathrm{(0)}$$ $$\Rightarrow\mathit{x}\mathrm{(0)}\:\mathrm{=}\:\lim_{s \rightarrow \infty}\mathit{sX}\mathrm{(s)}$$
因此,我們有:
$$\lim_{t \rightarrow 0}\mathit{x}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathit{x}\mathrm{(0)}\:\mathrm{=}\:\lim_{s \rightarrow \infty}\mathit{sX}\mathrm{(s)}$$
數值例子
首先確定 $\mathit{x}\mathrm{(\mathit{t})}$,然後驗證給定函式的初始值定理:
$$\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\frac{\mathrm{1}}{\mathrm{(\mathit{s}+\mathrm{3})}}$$
解答
給定函式為:
$$\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\frac{\mathrm{1}}{\mathrm{(\mathit{s}+\mathrm{3})}}$$
對 $\mathit{X}\mathrm{(\mathit{s})}$ 進行反拉普拉斯變換,我們得到:
$$\mathit{x}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathit{L^{-\mathrm{1}}}[\mathit{X}\mathrm{(\mathit{s})}]\:\mathrm{=}\:\mathit{L^{-\mathrm{1}}}[\frac{1}{\mathrm{(\mathit{s}+\mathrm{3})}}]$$ $$\Rightarrow\mathit{x}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathit{e^-{\mathrm{3}t}}$$
因此,函式的初始值為:
$$\mathit{x}\mathrm{(0)}\:\mathrm{=}\:[\mathit{x}\mathrm{(\mathit{t})}]_{t=\mathrm{0}}$$ $$\Rightarrow\mathit{x}\mathrm{(0)}\:\mathrm{=}\:[\mathit{e}^{-\mathrm{3}\mathit{t}}]_{t=\mathrm{0}}\:\mathrm{=}\:\mathit{e^\mathrm{0}}\:\mathrm{=}\:\mathrm{1}$$
同樣,根據初始值定理,我們得到:
$$\mathit{x}\mathrm{(0)}\:\mathrm{=}\:\lim_{s \rightarrow \infty}\mathit{sX}\mathrm{(\mathit{s})}\:\mathrm{=}\:\lim_{s \rightarrow\infty}\mathit{s}[\frac{\mathrm{1}}{\mathrm{(\mathit{s}+\mathrm{3})}}]$$ $$\Rightarrow\mathit{x}\mathrm{(0)}\:\mathrm{=}\:\lim_{s \rightarrow\infty}[\frac{\mathrm{1}}{\mathrm{(1+\frac{3}{\mathit{s}})}}]\:\mathrm{=}\:\mathrm{1}$$
因此,對於給定函式,初始值定理得到驗證。