正弦和餘弦函式的拉普拉斯變換
拉普拉斯變換
拉普拉斯變換是一種數學工具,用於將時域中的微分方程轉換為頻域或s域中的代數方程。
數學上,如果$\mathrm{\mathit{x\left ( \mathit{t} \right )}}$是時域函式,則其拉普拉斯變換定義為:
$$\mathrm{\mathit{L\left [ x\left ( \mathrm{t} \right ) \right ]}= \mathit{X\left ( s \right )}=\int_{-\infty }^{\infty}\mathit{x\left ( \mathrm{t} \right )e^{-st}\; dt}\; \; ...\left ( 1 \right )}$$
公式 (1) 給出了函式 $\mathrm{\mathit{x\left ( \mathit{t} \right )}}$ 的雙邊拉普拉斯變換。但對於因果訊號,則應用單邊拉普拉斯變換,其定義為:
$$\mathrm{\mathit{L\left [ x\left ( \mathrm{t} \right ) \right ]}\mathrm{=} \mathit{X\left ( s \right )}\mathrm{=}\int_{0 }^{\infty}\mathit{x\left ( \mathrm{t} \right )e^{-st}\; dt}\; \; ...\left ( 2 \right )}$$
正弦函式的拉普拉斯變換
設:
$$\mathrm{\mathit{x\left ( t \right )}\mathrm{=}sin\: \mathit{\omega t\: u\left ( t \right )}\mathrm{=}\mathit{\frac{e^{j\:\omega t }-e^{-j\:\omega t}}{\mathrm{2}j}u\left ( t \right )}}$$
因此,根據拉普拉斯變換的定義,我們有:
$$\mathrm{\mathit{X\left ( s \right )}\mathrm{=}\mathit{L\left [ \mathrm{sin}\: \mathit{\omega t\: u\left ( t \right )} \right ]}\mathrm{=}\mathit{L}\left [ \mathit{\frac{e^{j\:\omega t }-e^{-j\:\omega t}}{\mathrm{2}j}u\left ( t \right )} \right ]}$$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{sin\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2\mathit{j}}\left\{\mathit{L\left [ e^{j\:\omega t}u\left ( t \right ) \right ]-L\left [ e^{-j\:\omega t}u\left ( t \right ) \right ]} \right\}} $$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{sin\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2\mathit{j}}\left\{\left [ \frac{1}{\mathit{\left ( s\mathrm{+}j\:\omega \right ) }} \right ]-\left [ \frac{1}{\mathit{\left ( s-j\:\omega \right )}} \right ] \right\}\mathrm{=}\frac{1}{2\mathit{j}}\left [ \frac{\mathit{s-j\:\omega -s-j\:\omega}}{\mathit{s^{\mathrm{2}}}\mathrm{+}\omega ^{\mathrm{2}}} \right ]}$$
$$\mathrm{\therefore \mathit{L\left [ \mathrm{sin\; }\omega t\; u\left ( t \right ) \right ]}\mathrm{=}\mathit{\left (\frac{\omega }{s^{\mathrm{2}}\mathrm{+}\omega ^{\mathrm{2}}} \right )}}$$
正弦函式拉普拉斯變換的收斂域 (ROC) 為 𝑅𝑒(𝑠) > 0,如圖 1 所示。因此,正弦函式的拉普拉斯變換及其 ROC 為:
$$\mathrm{sin\: \mathit{\omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}}\left ( \frac{\omega }{\mathit{s^{\mathrm{2}}}\mathrm{+}\omega ^{\mathrm{2}}} \right )\; \; and\; \; ROC\rightarrow Re\left ( \mathit{s} \right )> 0}$$

餘弦函式的拉普拉斯變換
設:
$$\mathrm{\mathit{x\left ( t \right )}\mathrm{=}cos \: \mathit{\omega t\: u\left ( t \right )}\mathrm{=}\mathit{\frac{e^{j\:\omega t }\mathrm{+}e^{-j\:\omega t}}{\mathrm{2}}u\left ( t \right )}}$$
現在,根據拉普拉斯變換的定義,我們有:
$$\mathrm{\mathit{X\left ( s \right )}\mathrm{=}\mathit{L\left [ \mathrm{cos}\: \mathit{\omega t\: u\left ( t \right )} \right ]}\mathrm{=}\mathit{L}\left [ \mathit{\frac{e^{j\:\omega t }\mathrm{+}e^{-j\:\omega t}}{\mathrm{2}}u\left ( t \right )} \right ]}$$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{cos\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2}\left\{\mathit{L\left [ e^{j\:\omega t}u\left ( t \right ) \right ]\mathrm{+}L\left [ e^{-j\:\omega t}u\left ( t \right ) \right ]} \right\}}$$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{cos\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2}\left [ \left ( \frac{1}{\mathit{s-j\omega }} \right ) \right ]\mathrm{+}\left [ \left ( \frac{1}{\mathit{s\mathrm{+}j\omega}} \right ) \right ] \mathrm{=}\frac{1}{2}\left [ \frac{\mathit{s\mathrm{+}j\omega \mathrm{+}s-j\omega}}{\mathit{s^{\mathrm{2}}}\mathrm{+}\omega ^{\mathrm{2}}} \right ]}$$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{cos\; }\omega t\; u\left ( t \right ) \right ]}\mathrm{=}\mathit{\left (\frac{s}{s^{\mathrm{2}}\mathrm{+}\omega ^{\mathrm{2}}} \right )}}$$
餘弦函式拉普拉斯變換的 ROC 也為 𝑅𝑒(𝑠) > 0,如圖 1 所示。因此,餘弦函式的拉普拉斯變換及其 ROC 為:
$$\mathrm{cos\: \mathit{\omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}}\left ( \frac{\mathit{s} }{\mathit{s^{\mathrm{2}}}\mathrm{+}\omega ^{\mathrm{2}}} \right )\; \; and\; \; ROC\rightarrow Re\left ( \mathit{s} \right )> 0}$$
雙曲正弦函式的拉普拉斯變換
設:
$$\mathrm{\mathit{x\left ( t \right )}\mathrm{=}sinh\: \mathit{\omega t\: u\left ( t \right )}\mathrm{=}\mathit{\frac{e^{\omega t }-e^{-\omega t}}{\mathrm{2}}u\left ( t \right )}} $$
現在,根據拉普拉斯變換的定義,我們有:
$$\mathrm{\mathit{X\left ( s \right )}\mathrm{=}\mathit{L\left [ \mathrm{sinh}\: \mathit{\omega t\: u\left ( t \right )} \right ]}\mathrm{=}\mathit{L}\left [ \mathit{\frac{e^{\omega t }-e^{-\omega t}}{\mathrm{2}}u\left ( t \right )} \right ]} $$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{sinh\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2}\left\{\mathit{L\left [ e^{\omega t}u\left ( t \right ) \right ]-L\left [ e^{-\omega t}u\left ( t \right ) \right ]} \right\}}$$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{sinh\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2}\left [ \left ( \frac{1}{\mathit{s-\omega }} \right ) \right ]-\left [ \left ( \frac{1}{\mathit{s\mathrm{+}\omega}} \right ) \right ] \mathrm{=}\frac{1}{2}\left [ \frac{\mathit{s\mathrm{+}\omega -s\mathrm{+}\omega}}{\mathit{s^{\mathrm{2}}}-\omega ^{\mathrm{2}}} \right ]}$$
$$\mathrm{\therefore \mathit{L\left [ \mathrm{sinh\; }\omega t\; u\left ( t \right ) \right ]}\mathrm{=}\mathit{\left (\frac{\omega }{s^{\mathrm{2}}-\omega ^{\mathrm{2}}} \right )}}$$
雙曲正弦函式拉普拉斯變換的 ROC 也為 𝑅𝑒(𝑠) > 0,如圖 1 上所示。因此,雙曲正弦函式的拉普拉斯變換及其 ROC 為:
$$\mathrm{sinh\: \mathit{\omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}}\left ( \frac{\omega }{\mathit{s^{\mathrm{2}}}-\omega ^{\mathrm{2}}} \right )\; \; and\; \; ROC\rightarrow Re\left ( \mathit{s} \right )> 0}$$
雙曲餘弦函式的拉普拉斯變換
設:
$$\mathrm{\mathit{x\left ( t \right )}\mathrm{=}cosh \: \mathit{\omega t\: u\left ( t \right )}\mathrm{=}\mathit{\frac{e^{\omega t }\mathrm{+}e^{-\omega t}}{\mathrm{2}}u\left ( t \right )}}$$
現在,根據拉普拉斯變換的定義,我們有:
$$\mathrm{\mathit{X\left ( s \right )}\mathrm{=}\mathit{L\left [ \mathrm{cosh}\: \mathit{\omega t\: u\left ( t \right )} \right ]}\mathrm{=}\mathit{L}\left [ \mathit{\frac{e^{\:\omega t }\mathrm{+}e^{-\:\omega t}}{\mathrm{2}}u\left ( t \right )} \right ]}$$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{cosh\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2}\left\{\mathit{L\left [ e^{\omega t}u\left ( t \right ) \right ]\mathrm{+}L\left [ e^{-\omega t}u\left ( t \right ) \right ]} \right\}}$$
$$\mathrm{\Rightarrow \mathit{L\left [ \mathrm{cosh\; }\omega t\; u\left ( t \right ) \right ]\mathrm{=}}\frac{1}{2}\left [ \left ( \frac{1}{\mathit{s-\omega }} \right ) \mathrm{+} \left ( \frac{1}{\mathit{s\mathrm{+}\omega}} \right ) \right ] \mathrm{=}\frac{1}{2}\left [ \frac{\mathit{s\mathrm{+}\omega \mathrm{+}s-\omega}}{\mathit{s^{\mathrm{2}}}-\omega ^{\mathrm{2}}} \right ]}$$
$$\mathrm{\therefore \mathit{L\left [ \mathrm{cosh\; }\omega t\; u\left ( t \right ) \right ]}\mathrm{=}\mathit{\left (\frac{s}{s^{\mathrm{2}}-\omega ^{\mathrm{2}}} \right )}}$$
雙曲餘弦函式拉普拉斯變換的 ROC 也為 𝑅𝑒(𝑠) > 0,如上圖 1 所示。因此,雙曲餘弦函式的拉普拉斯變換及其 ROC 為:
$$\mathrm{cosh\: \mathit{\omega t\: u\left ( t \right )\overset{LT}{\leftrightarrow}}\left ( \frac{\mathit{s} }{\mathit{s^{\mathrm{2}}}-\omega ^{\mathrm{2}}} \right )\; \; and\; \; ROC\rightarrow Re\left ( \mathit{s} \right )> 0}$$
資料結構
網路
關係型資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP